期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于听觉模型的子波变换语音增强 被引量:1
1
作者 林宝成 富煜清 黄志同 《东南大学学报(自然科学版)》 EI CAS CSCD 1995年第A04期144-149,共6页
基于听觉模型的子波变换语音增强林宝成,富煜清黄志同(东南大学无线电工程系,南京210018)(南京理工大学自控系,南京210014)在许多实际的语音信号处理中,都迫切需要进行语音增强,例如,噪声环境中的语音识别[2]... 基于听觉模型的子波变换语音增强林宝成,富煜清黄志同(东南大学无线电工程系,南京210018)(南京理工大学自控系,南京210014)在许多实际的语音信号处理中,都迫切需要进行语音增强,例如,噪声环境中的语音识别[2]、语音编码、语音合成等。尽管有各种... 展开更多
关键词 AUDITORY PERCEPTION speech enhancement signal processing/wavelet transform
在线阅读 下载PDF
Soft sensor design for hydrodesulfurization process using support vector regression based on WT and PCA 被引量:2
2
作者 Saeid Shokri Mohammad Taghi Sadeghi +1 位作者 Mahdi Ahmadi Marvast Shankar Narasimhan 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第2期511-521,共11页
A novel method for developing a reliable data driven soft sensor to improve the prediction accuracy of sulfur content in hydrodesulfurization(HDS) process was proposed. Therefore, an integrated approach using support ... A novel method for developing a reliable data driven soft sensor to improve the prediction accuracy of sulfur content in hydrodesulfurization(HDS) process was proposed. Therefore, an integrated approach using support vector regression(SVR) based on wavelet transform(WT) and principal component analysis(PCA) was used. Experimental data from the HDS setup were employed to validate the proposed model. The results reveal that the integrated WT-PCA with SVR model was able to increase the prediction accuracy of SVR model. Implementation of the proposed model delivers the best satisfactory predicting performance(EAARE=0.058 and R2=0.97) in comparison with SVR. The obtained results indicate that the proposed model is more reliable and more precise than the multiple linear regression(MLR), SVR and PCA-SVR. 展开更多
关键词 soft sensor support vector regression principal component analysis wavelet transform hydrodesulfurization process
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部