In this paper, by applying a group of specific orthogonal wavelet packet to Eykho?algorithm, a new impulse response identification algorithm based on varying scale orthogonal WPTis provided. In comparison to Eykho? al...In this paper, by applying a group of specific orthogonal wavelet packet to Eykho?algorithm, a new impulse response identification algorithm based on varying scale orthogonal WPTis provided. In comparison to Eykho? algorithm, the new algorithm has better practicability andwider application range. Simulation results show that the proposed impulse response identificationalgorithm can be applied to both deterministic and random systems, and is of higher identificationprecision, stronger anti-noise interference ability and better system dynamic tracking property.展开更多
To make the modulation classification system more suitable for signals in a wide range of signal to noise rate (SNR), a feature extraction method based on signal wavelet packet transform modulus maxima matrix (WPT...To make the modulation classification system more suitable for signals in a wide range of signal to noise rate (SNR), a feature extraction method based on signal wavelet packet transform modulus maxima matrix (WPTMMM) and a novel support vector machine fuzzy network (SVMFN) classifier is presented. The WPTMMM feature extraction method has less computational complexity, more stability, and has the preferable advantage of robust with the time parallel moving and white noise. Further, the SVMFN uses a new definition of fuzzy density that incorporates accuracy and uncertainty of the classifiers to improve recognition reliability to classify nine digital modulation types (i.e. 2ASK, 2FSK, 2PSK, 4ASK, 4FSK, 4PSK, 16QAM, MSK, and OQPSK). Computer simulation shows that the proposed scheme has the advantages of high accuracy and reliability (success rates are over 98% when SNR is not lower than 0dB), and it adapts to engineering applications.展开更多
Blast vibration analysis constitutes the foundation for studying the control of blasting vibration damage and provides the precondition of controlling blasting vibration. Based on the characteristics of short-time non...Blast vibration analysis constitutes the foundation for studying the control of blasting vibration damage and provides the precondition of controlling blasting vibration. Based on the characteristics of short-time nonstationary random signal, the laws of energy distribution are investigated for blasting vibration signals in different blasting conditions by means of the wavelet packet analysis technique. The characteristics of wavelet transform and wavelet packet analysis are introduced. Then, blasting vibration signals of different blasting conditions are analysed by the wavelet packet analysis technique using MATLAB; energy distribution for different frequency bands is obtained. It is concluded that the energy distribution of blasting vibration signals varies with maximum decking charge,millisecond delay time and distances between explosion and the measuring point. The results show that the wavelet packet analysis method is an effective means for studying blasting seismic effect in its entirety, especially for constituting velocity-frequency criteria.展开更多
为了提取被强噪声淹没的机械设备振动信号中蕴含的微弱故障特征,依据有用信号和噪声在空间分布特性的不同,将流形学习的方法引入到信号降噪中,提出一种将双树复小波包(DTCWPT)和t分布随机近邻嵌入(t-SNE)结合的去噪方法,充分利用了DTCWP...为了提取被强噪声淹没的机械设备振动信号中蕴含的微弱故障特征,依据有用信号和噪声在空间分布特性的不同,将流形学习的方法引入到信号降噪中,提出一种将双树复小波包(DTCWPT)和t分布随机近邻嵌入(t-SNE)结合的去噪方法,充分利用了DTCWPT分解的多尺度特性以及t-SNE的非线性降维能力。将振动信号进行双树复小波包分解,依据各尺度小波包系数Shannon熵值搜索最佳小波包基,利用提出的新的阈值函数,对最佳小波包基的小波包系数进行去噪并单支重构组成高维信号空间,然后,采用t-SNE提取高维空间的低维流形,对低维信号序列进一步采用阈值去噪,利用谱回归分析重构回一维信号序列。最后,通过对仿真信号与滚动轴承振动信号进行去噪,结果证实了方法具有良好的非线性去噪性能,将仿真信号的信噪比从-1提高到8.6 d B,并且能更有效的提取强噪声干扰下滚动轴承的故障特征频率。展开更多
文摘In this paper, by applying a group of specific orthogonal wavelet packet to Eykho?algorithm, a new impulse response identification algorithm based on varying scale orthogonal WPTis provided. In comparison to Eykho? algorithm, the new algorithm has better practicability andwider application range. Simulation results show that the proposed impulse response identificationalgorithm can be applied to both deterministic and random systems, and is of higher identificationprecision, stronger anti-noise interference ability and better system dynamic tracking property.
文摘To make the modulation classification system more suitable for signals in a wide range of signal to noise rate (SNR), a feature extraction method based on signal wavelet packet transform modulus maxima matrix (WPTMMM) and a novel support vector machine fuzzy network (SVMFN) classifier is presented. The WPTMMM feature extraction method has less computational complexity, more stability, and has the preferable advantage of robust with the time parallel moving and white noise. Further, the SVMFN uses a new definition of fuzzy density that incorporates accuracy and uncertainty of the classifiers to improve recognition reliability to classify nine digital modulation types (i.e. 2ASK, 2FSK, 2PSK, 4ASK, 4FSK, 4PSK, 16QAM, MSK, and OQPSK). Computer simulation shows that the proposed scheme has the advantages of high accuracy and reliability (success rates are over 98% when SNR is not lower than 0dB), and it adapts to engineering applications.
基金Project(50490272) supported by the National Natural Science Foundation of China project(2004036430) supported bythe Postdoctoral Science Foundation of China
文摘Blast vibration analysis constitutes the foundation for studying the control of blasting vibration damage and provides the precondition of controlling blasting vibration. Based on the characteristics of short-time nonstationary random signal, the laws of energy distribution are investigated for blasting vibration signals in different blasting conditions by means of the wavelet packet analysis technique. The characteristics of wavelet transform and wavelet packet analysis are introduced. Then, blasting vibration signals of different blasting conditions are analysed by the wavelet packet analysis technique using MATLAB; energy distribution for different frequency bands is obtained. It is concluded that the energy distribution of blasting vibration signals varies with maximum decking charge,millisecond delay time and distances between explosion and the measuring point. The results show that the wavelet packet analysis method is an effective means for studying blasting seismic effect in its entirety, especially for constituting velocity-frequency criteria.
文摘为了提取被强噪声淹没的机械设备振动信号中蕴含的微弱故障特征,依据有用信号和噪声在空间分布特性的不同,将流形学习的方法引入到信号降噪中,提出一种将双树复小波包(DTCWPT)和t分布随机近邻嵌入(t-SNE)结合的去噪方法,充分利用了DTCWPT分解的多尺度特性以及t-SNE的非线性降维能力。将振动信号进行双树复小波包分解,依据各尺度小波包系数Shannon熵值搜索最佳小波包基,利用提出的新的阈值函数,对最佳小波包基的小波包系数进行去噪并单支重构组成高维信号空间,然后,采用t-SNE提取高维空间的低维流形,对低维信号序列进一步采用阈值去噪,利用谱回归分析重构回一维信号序列。最后,通过对仿真信号与滚动轴承振动信号进行去噪,结果证实了方法具有良好的非线性去噪性能,将仿真信号的信噪比从-1提高到8.6 d B,并且能更有效的提取强噪声干扰下滚动轴承的故障特征频率。