期刊文献+
共找到82篇文章
< 1 2 5 >
每页显示 20 50 100
No-reference image quality assessment based on AdaBoost_BP neural network in wavelet domain 被引量:2
1
作者 YAN Junhua BAI Xuehan +4 位作者 ZHANG Wanyi XIAO Yongqi CHATWIN Chris YOUNG Rupert BIRCH Phil 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第2期223-237,共15页
Considering the relatively poor robustness of quality scores for different types of distortion and the lack of mechanism for determining distortion types, a no-reference image quality assessment(NR-IQA) method based o... Considering the relatively poor robustness of quality scores for different types of distortion and the lack of mechanism for determining distortion types, a no-reference image quality assessment(NR-IQA) method based on the Ada Boost BP neural network in the wavelet domain(WABNN) is proposed. A 36-dimensional image feature vector is constructed by extracting natural scene statistics(NSS) features and local information entropy features of the distorted image wavelet sub-band coefficients in three scales. The ABNN classifier is obtained by learning the relationship between image features and distortion types. The ABNN scorer is obtained by learning the relationship between image features and image quality scores. A series of contrast experiments are carried out in the laboratory of image and video engineering(LIVE) database and TID2013 database. Experimental results show the high accuracy of the distinguishing distortion type, the high consistency with subjective scores and the high robustness of the method for distorted images. Experiment results also show the independence of the database and the relatively high operation efficiency of this method. 展开更多
关键词 image quality assessment (IQA) AdaBoost_BP neural network (ABNN) wavelet transform natural SCENE STATISTICS (NSS) local information entropy
在线阅读 下载PDF
基于IRCMMRDE和HHO-PNN的轴承损伤辨识模型
2
作者 桂芳 李健 刘磊 《机电工程》 北大核心 2025年第1期62-71,共10页
采用单通道振动信号无法完全准确表征轴承多角度的故障信息,导致特征提取不够充分。针对这一缺陷,构建了一种基于改进精细复合多元多尺度反向散布熵(IRCMMRDE)和参数优化概率神经网络(PNN)的滚动轴承损伤辨识模型。首先,使用了振动加速... 采用单通道振动信号无法完全准确表征轴承多角度的故障信息,导致特征提取不够充分。针对这一缺陷,构建了一种基于改进精细复合多元多尺度反向散布熵(IRCMMRDE)和参数优化概率神经网络(PNN)的滚动轴承损伤辨识模型。首先,使用了振动加速度计和麦克风两种类型的传感器,同时获得了滚动轴承不同工况下的振动和声音信号,构建了故障信息量更丰富的多通道信号;随后,提出了能够同步分析多通道信号的IRCMMRDE方法,并将其用于提取滚动轴承多通道信号的故障特征;接着,采用哈里斯鹰优化器(HHO)对概率神经网络的平滑因子进行了自适应寻优,构造了网络结构最优的PNN模型;最后,将损伤样本输入至HHO-PNN模型中,进行了故障的分类识别,完成了滚动轴承样本的故障辨识;并基于滚动轴承声振信号数据集,对基于IRCMMRDE-HHO-PNN的故障诊断方法的有效性进行了验证。研究结果表明:基于IRCMMRDE和HHO-PNN的故障诊断方法的准确率达到了99.6%,平均的识别准确率达到了99.8%,优于其他多种特征提取方法;同时,对多通道融合信号进行分析取得的准确率优于单个通道的信号,准确率分别提高了8.8%和4.8%;此外,HHO-PNN分类器模型的诊断性能优于其他分类模型,更具有泛化性和实用性。 展开更多
关键词 滚动轴承 故障诊断 改进精细复合多元多尺度反向散布熵 概率神经网络 多通道信号 哈里斯鹰优化器
在线阅读 下载PDF
基于LSTM-PNN神经网络的电潜泵故障诊断方法
3
作者 周逸飞 刘新福 +4 位作者 曹砚锋 于继飞 欧阳铁兵 刘春花 周伟 《机床与液压》 北大核心 2024年第19期209-215,共7页
针对电潜螺杆泵故障预测中发生故障难以及时发现、发现难以准确判别故障类型等问题,提出一种基于深度学习长短期记忆网络(LSTM)结合概率神经网络(PNN)的电潜螺杆泵故障预测方法。以LSTM网络为回归模型,使用时间序列法预测故障信号的未... 针对电潜螺杆泵故障预测中发生故障难以及时发现、发现难以准确判别故障类型等问题,提出一种基于深度学习长短期记忆网络(LSTM)结合概率神经网络(PNN)的电潜螺杆泵故障预测方法。以LSTM网络为回归模型,使用时间序列法预测故障信号的未来趋势,利用小波包分解螺杆泵的故障信号,提取其中的故障特征,再结合油压、产量等多个工作参数,构建电潜螺杆泵的故障特征向量,并凭借PNN网络判别预测信号故障类型。收集新疆油田120组故障数据作为数据集对预测模型进行训练,从中取出90组数据作为故障数据库对模型进行训练,取出30组数据作为测试组测试模型准确率,使用LSTM-PNN神经网络预测模型分别对两组数据进行电潜螺杆泵故障预测。结果表明:预测前提取故障信号特征可有效提高电潜螺杆泵的故障预测精度,较常规电潜螺杆泵故障预测方法,LSTM-PNN网络预测具有更高的准确率且准确率提升了3%~16%。 展开更多
关键词 电潜螺杆泵 小波包分解 故障诊断 长短期记忆神经网络 概率神经网络
在线阅读 下载PDF
基于DWT和PNN的印刷过程实时监测和故障诊断 被引量:6
4
作者 鄢腊梅 管力明 +1 位作者 胡更生 何宏 《振动.测试与诊断》 EI CSCD 北大核心 2010年第3期236-239,共4页
提出了一种新的基于离散小波变换和概率神经网络的印刷过程振动信号的实时监测和故障诊断系统。利用小波包分解技术对印刷过程振动信号进行降噪处理,并选择特殊频段进行小波包重构,有效捕捉和分离了处于信号不同频段的印刷过程振动信号... 提出了一种新的基于离散小波变换和概率神经网络的印刷过程振动信号的实时监测和故障诊断系统。利用小波包分解技术对印刷过程振动信号进行降噪处理,并选择特殊频段进行小波包重构,有效捕捉和分离了处于信号不同频段的印刷过程振动信号故障特征分量。对提取的故障特征参数应用概率神经网络映射,实现对印刷过程振动信号运行状态的实时监测和故障诊断。仿真结果表明,该诊断方法快速、准确且易于工程实现。 展开更多
关键词 离散小波变换 概率神经网络 故障诊断 印刷过程
在线阅读 下载PDF
基于小波系数KPCA和PNN的电能质量扰动分类 被引量:7
5
作者 何朝辉 黄纯 +1 位作者 刘斌 程扬军 《电力系统及其自动化学报》 CSCD 北大核心 2010年第2期76-81,108,共7页
针对电能质量扰动分类,提出基于小波系数特征的核主成分分析(KPCA)和概率神经网络(PNN)的分类新方法。对正常信号和六种常见电能质量扰动(电压暂降、暂升、短时中断、谐波、电压波动和振荡暂态)进行小波变换和多尺度分析,提取各类扰动... 针对电能质量扰动分类,提出基于小波系数特征的核主成分分析(KPCA)和概率神经网络(PNN)的分类新方法。对正常信号和六种常见电能质量扰动(电压暂降、暂升、短时中断、谐波、电压波动和振荡暂态)进行小波变换和多尺度分析,提取各类扰动在多个尺度上小波系数作为特征向量;利用KPCA进行主成分提取,降低了小波系数特征向量维数,再输入PNN进行分类。仿真表明,该方法分类速度和准确率良好。 展开更多
关键词 电能质量扰动 分类 核主成分分析 概率神经网络 小波变换
在线阅读 下载PDF
基于EEMD-Renyi熵和PCA-PNN的滚动轴承故障诊断 被引量:8
6
作者 窦东阳 李丽娟 赵英凯 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第B09期107-111,共5页
针对滚动轴承故障特征提取与状态监测问题,提出一种基于集合经验模式分解(EEMD)、Renyi熵、主元分析(PCA)和概率神经网络(PNN)的新方法.首先,将轴承振动信号通过EEMD分解成一组本征模态函数(IMF),计算每个IMF分量的Renyi熵值作为表征故... 针对滚动轴承故障特征提取与状态监测问题,提出一种基于集合经验模式分解(EEMD)、Renyi熵、主元分析(PCA)和概率神经网络(PNN)的新方法.首先,将轴承振动信号通过EEMD分解成一组本征模态函数(IMF),计算每个IMF分量的Renyi熵值作为表征故障特征的向量,采用主元分析(PCA)对特征降维,提取主元输入概率神经网络进行故障分类.通过SKF6203轴承的正常、内圈点蚀、外圈点蚀和滚动体点蚀这4类状态的诊断实验验证了方法的有效性,诊断正确率为91.7%. 展开更多
关键词 故障诊断 滚动轴承 集合经验模式分解 RENYI熵 主元分析 概率神经网络
在线阅读 下载PDF
基于WPNN与数据融合的损伤检测方法 被引量:4
7
作者 姜绍飞 付春 +1 位作者 陈仲堂 盛岩 《沈阳建筑大学学报(自然科学版)》 EI CAS 2005年第2期86-90,共5页
目的为了有效利用结构健康监测系统中的多源传感器数据信息,对复杂结构的健康状况进行诊断进而提高确诊率.方法利用概率神经网络(PNN)的贝叶斯推理与诊断能力及多传感器数据融合原理,将神经网络与数据融合有机结合,使两者优势互补,提出... 目的为了有效利用结构健康监测系统中的多源传感器数据信息,对复杂结构的健康状况进行诊断进而提高确诊率.方法利用概率神经网络(PNN)的贝叶斯推理与诊断能力及多传感器数据融合原理,将神经网络与数据融合有机结合,使两者优势互补,提出了复杂结构损伤检测技术及其在多层框架结构中损伤检测及诊断中的应用.结果提出了基于小波概率神经网络(WPNN)与数据融合的损伤检测方法.结论基于WPNN与数据融合的损伤检测方法是可行的、有效的. 展开更多
关键词 检测方法 结构健康监测系统 多传感器数据融合 概率神经网络 多层框架结构 贝叶斯推理 数据信息 健康状况 复杂结构 诊断能力 有机结合 优势互补 损伤检测 检测技术 结构损伤 确诊率
在线阅读 下载PDF
基于小波熵特征的无人机射频信号识别算法研究
8
作者 刘冰 时明心 刘佳琪 《电子与信息学报》 北大核心 2025年第8期2736-2745,共10页
随着无人机技术的迅猛发展及其在多个领域的广泛应用,确保无人机的安全飞行和有效监管成为了一个重要的研究课题。该文提出一种基于小波熵特征和优化神经网络的无人机飞控射频信号分类识别方法,旨在解决复杂电磁环境中无人机信号识别的... 随着无人机技术的迅猛发展及其在多个领域的广泛应用,确保无人机的安全飞行和有效监管成为了一个重要的研究课题。该文提出一种基于小波熵特征和优化神经网络的无人机飞控射频信号分类识别方法,旨在解决复杂电磁环境中无人机信号识别的问题。通过提取射频信号的小波熵特征并构建特征向量,结合由大蔗鼠优化算法(GCRA)优化的支持向量机(SVM)分类器,实现了对不同型号无人机的有效分类。实验使用了公开数据集DroneRFa中的常见无人机射频信号,经过10-折交叉验证测试,该方法对于6种型号的无人机分类准确率达到了97%以上,最高可达99%,证明了所提方法的有效性和可靠性。该研究为无人机自主避障、路径规划以及多机协同作业提供了重要的技术支持。 展开更多
关键词 小波熵 优化神经网络 无人机射频信号 识别算法
在线阅读 下载PDF
基于多模态特征小波分解的深度学习股价概率预测
9
作者 张永宇 郭晨娟 魏涵玥 《计算机科学》 北大核心 2025年第S1期758-768,共11页
构建了一种创新的基于多模态特征小波分解的深度学习股价概率预测模型(MWDPF)。该模型融合了动态连续特征、动态分类特征、静态连续特征和静态分类特征等多源异构信息,通过并行融合的策略充分挖掘不同特征子空间的互补信息,全面刻画影... 构建了一种创新的基于多模态特征小波分解的深度学习股价概率预测模型(MWDPF)。该模型融合了动态连续特征、动态分类特征、静态连续特征和静态分类特征等多源异构信息,通过并行融合的策略充分挖掘不同特征子空间的互补信息,全面刻画影响股价波动的多重维度。该模型采用自回归递归神经网络架构,能够直接输出股价变化的概率分布预测,而非单一确定值预测,更加贴近实际股价呈概率分布的特征。另外,该模型引入小波分解技术,对原始时间序列进行去噪,自适应地过滤掉不同尺度下的噪声成分,提高了对内在波动规律的捕捉能力。实证分析阶段,采集了来自金融数据库和互联网论坛的多模态数据,通过缺失值填充、去极值、时间对齐等一系列预处理,以及精心的特征工程和模型优化,实现了优秀的预测性能,显著优于传统的统计学模型和深度学习模型,评价指标均有大幅改善。该模型产生的预测结果被用于构建了一个多因子选股策略,在实际回测中取得了可观的超额收益,进一步验证了该模型在实际投资决策中的有效性。该研究为股价预测提供了一种行之有效的解决方案,丰富了量化投资的理论和方法,具有重要的理论意义和应用价值。 展开更多
关键词 概率密度预测 多模态异构特征融合 小波分解时频分析 自回归递归神经网络 投资组合超额收益
在线阅读 下载PDF
基于CEEMDAN样本熵与PNN的行星齿轮故障诊断 被引量:9
10
作者 徐晋宏 魏秀业 +2 位作者 贺妍 程海吉 张宁 《机床与液压》 北大核心 2021年第20期179-183,共5页
为对行星齿轮进行故障诊断,采用自适应噪声完备总体经验模态分解(CEEMDAN)方法对采集的信号进行分解。对分解得到的各IMF分量进行相关系数计算,优选出与原始信号相关性较大的前4阶分量进行样本熵计算,得到特征值,构成特征向量。将特征... 为对行星齿轮进行故障诊断,采用自适应噪声完备总体经验模态分解(CEEMDAN)方法对采集的信号进行分解。对分解得到的各IMF分量进行相关系数计算,优选出与原始信号相关性较大的前4阶分量进行样本熵计算,得到特征值,构成特征向量。将特征向量输入到概率神经网络系统中进行诊断,且与基于局域均值分解的样本熵特征提取方法的诊断结果进行对比。结果表明:利用CEEMDAN样本熵提取的特征值能更精准地反映系统的故障特性,故障诊断的正确率高。 展开更多
关键词 行星齿轮 自适应噪声完备总体经验模态分解(CEEMDAN) 样本熵 概率神经网络(pnn)
在线阅读 下载PDF
融合NBC与PNN的网络异常分类
11
作者 周明伟 刘渊 《计算机工程与应用》 CSCD 2013年第17期89-93,共5页
对网络异常进行分类有利于管理员更好地管理网络,然而单一的分类器存在对各类异常的分类效果不均衡,不够全面等问题。鉴于此在研究了常用于分类的概率神经网络(Probability Neural Network,PNN)算法和朴素贝叶斯分类器(Naive Bayes Clas... 对网络异常进行分类有利于管理员更好地管理网络,然而单一的分类器存在对各类异常的分类效果不均衡,不够全面等问题。鉴于此在研究了常用于分类的概率神经网络(Probability Neural Network,PNN)算法和朴素贝叶斯分类器(Naive Bayes Classifier,NBC)算法的基础上提出了一种融合NBC与PNN的网络异常分类模型。该模型将PNN与NBC对各类网络异常的分类精度作为权值,通过计算得出未知流量所属各类别的概率,最大值为预测结果,通过KDD99数据集对该模型进行测试,实验结果表明,提出的新模型相对于仅使用PNN或者NBC的单分类器,其对各类异常的分类效果具有更好的均衡性和更高的分类精度。 展开更多
关键词 网络异常 概率神经网络 朴素贝叶斯分类器 融合 异常分类
在线阅读 下载PDF
基于LMS-PNN算法在心音识别与预测中的应用 被引量:3
12
作者 周克良 王佳佳 《数据采集与处理》 CSCD 北大核心 2019年第5期831-836,共6页
传统的概率神经网络(Probability neural network,PNN)具有很强的容错性、学习过程简单、训练速度快等特点。为提高传统PNN在心音分类方面的性能,利用最小均方(Least mean square,LMS)方法对其进行优化,进而提高心音分类与预测的准确性... 传统的概率神经网络(Probability neural network,PNN)具有很强的容错性、学习过程简单、训练速度快等特点。为提高传统PNN在心音分类方面的性能,利用最小均方(Least mean square,LMS)方法对其进行优化,进而提高心音分类与预测的准确性。LMS PNN算法对心音的信号运用窗函数进行分帧,利用双门限法确定数据IS的值,运用LMS方法对相应的参数进行调试,并将去噪后的数据以mat格式保存,提取出各个心音的短时自相关系数以及短时功率谱密度,并运用PNN,抽取40 000个样本数据进行训练,并对各心音进行等级划分与预测。从PNN的模式层输入训练数据后,由实验数据验证可知,LMS PNN算法的预测准确率可达96%以上。 展开更多
关键词 心音 最小均方(LMS) 短时自相关系数 短时功率谱密度 概率神经网络(pnn)
在线阅读 下载PDF
基于HRFDE和GSA-PNN的旋转机械故障识别模型 被引量:2
13
作者 赫大雨 王强 《机电工程》 CAS 北大核心 2023年第12期1869-1879,共11页
采用波动散布熵只能提取故障振动信号的单一尺度特征,而多尺度反向波动散布熵(MRFDE)无法分析信号的高频特性信息,导致提取的故障特征不够全面,进而影响旋转机械故障识别准确率,针对这一问题,提出了一种基于层次反向波动散布熵(HRFDE)... 采用波动散布熵只能提取故障振动信号的单一尺度特征,而多尺度反向波动散布熵(MRFDE)无法分析信号的高频特性信息,导致提取的故障特征不够全面,进而影响旋转机械故障识别准确率,针对这一问题,提出了一种基于层次反向波动散布熵(HRFDE)和引力搜索算法优化概率神经网络(GSA-PNN)的旋转机械故障诊断模型(方法)。首先,利用层次分割处理代替MRFDE中的粗粒化处理,提出了可以同时提取信号中低频段信息和高频段信息的HRFDE方法,并用于全面表征旋转机械故障特征中的低频和高频信息,从而生成了故障特征样本;然后,采用引力搜索算法(GSA)方法对概率神经网络(PNN)分类器的平滑因子进行了快速优化,建立了GSA-PNN多故障分类模型,对旋转机械的故障类型进行了识别和检测;最后,利用滚动轴承和齿轮箱两种典型的故障数据集,对基于HRFDE方法和GSA-PNN分类器的故障诊断方法的有效性和稳定性进行了实验分析,并将其与现有基于MRFDE、多尺度波动散布熵(MFDE)和层次散布熵(HDE)的故障特征提取方法进行了对比分析。研究结果表明:基于HRFDE方法和GSA-PNN分类器的故障诊断方法可以精准地识别旋转机械的不同故障类型,对两种数据集的识别准确率均达到了98%;而在牺牲部分故障识别效率的基础上,能够获得优于其他对比方法的故障识别准确率,其具有更好的综合性能。 展开更多
关键词 旋转机械 反向波动散布熵 层次反向波动散布熵 故障分类器 引力搜索算法 概率神经网络
在线阅读 下载PDF
脑电信号多特征融合与卷积神经网络算法研究 被引量:5
14
作者 宋世林 张学军 《计算机工程与应用》 CSCD 北大核心 2024年第8期148-155,共8页
针对脑电信号(electroencephalogram,EEG)运动想象中单一特征无法多维表征信号中的信息导致的分类准确率不高的问题,提出一种基于样本熵和共空间模式特征融合的特征提取算法。算法先对原始脑电信号进行小波包分解,从中选择包含μ和β节... 针对脑电信号(electroencephalogram,EEG)运动想象中单一特征无法多维表征信号中的信息导致的分类准确率不高的问题,提出一种基于样本熵和共空间模式特征融合的特征提取算法。算法先对原始脑电信号进行小波包分解,从中选择包含μ和β节律的分量进行重构,然后分别提取重构信号的样本熵和CSP(common spatial pattern,CSP)特征,将两者融合组成新的特征向量,使用所设计的一维卷积神经网络对其进行识别获得分类结果。所提方法在2003年BCI Dataset III中获得了91.66%的分类准确率,在2008年BCI Dataset A中获得了85.29%的平均分类准确率。与近年来文献中提出的多特征融合算法相比,准确率提高了7.96个百分点。 展开更多
关键词 脑电信号 运动想象 小波包重构 样本熵 共空间模式 卷积神经网络
在线阅读 下载PDF
一种基于类小波变换的无线电频谱监测数据无损压缩方法 被引量:1
15
作者 张承琰 郑明魁 +3 位作者 刘会明 易天儒 李少良 陈祖儿 《电子测量与仪器学报》 CSCD 北大核心 2024年第7期152-158,共7页
无线电频谱监测海量数据存储和分析是无线电监管工作的重要组成部分。频谱数据具有时间相关性以及不同频点间的相关冗余,对此本文设计了一种基于类小波变换的无线电频谱监测数据无损压缩方法。该方法首先基于时间相关性将一维频谱信号... 无线电频谱监测海量数据存储和分析是无线电监管工作的重要组成部分。频谱数据具有时间相关性以及不同频点间的相关冗余,对此本文设计了一种基于类小波变换的无线电频谱监测数据无损压缩方法。该方法首先基于时间相关性将一维频谱信号转换成二维矩阵;转换成二维矩阵后数据在水平方向以及垂直方向都存在冗余,算法采用卷积神经网络来代替传统小波中的预测和更新模块,并引入了自适应压缩块来处理不同维度的特征,从而获得更紧凑的频谱数据表示。研究进一步设计了一种基于上下文的深度熵模型,利用类小波变换不同子带系数获得熵编码参数,以此估计累积概率,从而实现频谱数据的压缩。实验结果表明,与已有的Deflate等传统频谱监测数据无损压缩方法相比,本文算法有进一步的性能提升,与典型的JPEG2000、PNG、JPEG-LS等二维图像无损压缩方法相比,本文所提出的方法的压缩效果也提高了20%以上。 展开更多
关键词 频谱监测数据 无损压缩 类小波变换 卷积神经网络 熵编码
在线阅读 下载PDF
基于WTMSE-AMCNN_1D的协作机器人故障诊断
16
作者 戴天赐 王华 +2 位作者 汪健 董凌浩 李帅康 《组合机床与自动化加工技术》 北大核心 2024年第1期118-122,共5页
六轴协作机器人在实际工作中难以采集到振动数据,且其故障诊断精度低,针对这一问题,提出一种基于多尺度小波分解、样本熵与一维注意力卷积神经网络(WTMSE-AMCNN_1D)的六轴协作机器人电流信号故障诊断方法。首先,对采集的原始故障数据进... 六轴协作机器人在实际工作中难以采集到振动数据,且其故障诊断精度低,针对这一问题,提出一种基于多尺度小波分解、样本熵与一维注意力卷积神经网络(WTMSE-AMCNN_1D)的六轴协作机器人电流信号故障诊断方法。首先,对采集的原始故障数据进行随机采样;其次,采用多尺度小波分解后计算样本熵的方法来提取原始信号特征,将其作为引入注意力机制(AM)的一维卷积神经网络的输入并进行训练;最后,利用端到端训练后的模型实现故障诊断。通过实验采集某六轴协作机器人的电流数据进行诊断测试,并与其它模型对比,结果表明WTMSE-AMCNN_1D模型诊断精度达到99.21%,可以有效诊断协作机器人的故障。 展开更多
关键词 协作机器人 故障诊断 小波分解 多尺度样本熵 注意力机制 一维卷积神经网络
在线阅读 下载PDF
小波包奇异谱熵与LVQ网络齿轮箱轴承退化评估
17
作者 肖乾 汪寒俊 +5 位作者 朱海燕 王文静 朱恩豪 叶小芬 魏昱洲 李林 《振动.测试与诊断》 EI CSCD 北大核心 2024年第6期1181-1189,1249,1250,共11页
为研究齿轮箱轴承性能退化评估,首先,根据高速列车齿轮箱轴承与齿轮的相关数据,对齿轮箱轴承仿真振动信号训练样本进行小波包分解并计算小波包奇异谱熵构成特征向量,输入到学习向量量化(learning vector quantization,简称LVQ)神经网络... 为研究齿轮箱轴承性能退化评估,首先,根据高速列车齿轮箱轴承与齿轮的相关数据,对齿轮箱轴承仿真振动信号训练样本进行小波包分解并计算小波包奇异谱熵构成特征向量,输入到学习向量量化(learning vector quantization,简称LVQ)神经网络聚类模型中,建立性能退化评估模型;其次,将测试样本按同样的方式提取特征向量,输入到建立好的模型中评估轴承性能退化状态;然后,选取轴承全寿命疲劳试验进行分析,并选择特征优选和模糊C均值聚类算法进行对比;最后,根据LVQ神经网络聚类算法确定训练样本中正常状态和失效状态的聚类中心,建立性能退化评估模型。结果表明:将小波包奇异谱熵和LVQ神经网络聚类算法相结合,能较好区分齿轮箱轴承不同的退化状态,准确表现轴承性能退化曲线;通过隶属度函数计算隶属度作为性能退化评价指标,可以对性能退化状态进行定量表征;通过对时域指标和频域指标特征优选进行对比,验证了本研究方法更加有效,对早期退化更敏感,能及时发现早期退化并且能对退化程度进行准确评估。 展开更多
关键词 交通工程 齿轮箱振动加速度 信号仿真 小波包奇异谱熵 学习向量量化神经网络聚类 性能退化评估
在线阅读 下载PDF
基于小波熵和概率神经网络的配电网电压暂降源识别方法 被引量:53
18
作者 贾勇 何正友 赵静 《电网技术》 EI CSCD 北大核心 2009年第16期63-69,共7页
分析了短路故障、感应电动机启动和变压器投运引起电压暂降的原理及各类电压暂降的特征,提出一种基于小波熵(wavelet entropy,WE)和概率神经网络(probability neural network,PNN)的电压暂降源识别方法。提取信号的小波能谱熵和小波系... 分析了短路故障、感应电动机启动和变压器投运引起电压暂降的原理及各类电压暂降的特征,提出一种基于小波熵(wavelet entropy,WE)和概率神经网络(probability neural network,PNN)的电压暂降源识别方法。提取信号的小波能谱熵和小波系数熵特征向量,并将其输入概率神经网络,实现电压暂降源的自动识别。利用Matlab/Simulink建立简单配电网的仿真模型进行验证,结果表明,基于小波熵和概率神经网络的方法能很好地识别电压暂降源。 展开更多
关键词 电压暂降源 小波熵 概率神经网络 配电网
在线阅读 下载PDF
改进的小波包-特征熵在高压断路器故障诊断中的应用 被引量:71
19
作者 孙来军 胡晓光 纪延超 《中国电机工程学报》 EI CSCD 北大核心 2007年第12期103-108,共6页
在详细介绍小波包与特征熵的基础上,将二者结合提出了一种诊断高压断路器机械故障的新方法,并给出了切实可行的诊断步骤和分析。该方法首先将断路器基座振动信号进行3层小波包分解,提取第3层各节点重构信号的包络;然后利用正常状态标准... 在详细介绍小波包与特征熵的基础上,将二者结合提出了一种诊断高压断路器机械故障的新方法,并给出了切实可行的诊断步骤和分析。该方法首先将断路器基座振动信号进行3层小波包分解,提取第3层各节点重构信号的包络;然后利用正常状态标准信号所得各包络信号的等能量分段方式,实现对应节点待测状态信号包络的时间轴分段,并利用各分段积分能量、按照熵理论提取特征熵向量;最后构造简单的BP神经网络实现特征熵向量的分类。经正常和2种故障状态下高压断路器无负载振动信号测试,证明该方法检测高压断路器故障简单、准确,为断路器的故障诊断开拓了新的思路。 展开更多
关键词 高压断路器 小波包 特征熵 神经网络 故障诊断
在线阅读 下载PDF
小波包能量熵神经网络在电力系统故障诊断中的应用 被引量:35
20
作者 张举 王兴国 李志雷 《电网技术》 EI CSCD 北大核心 2006年第5期72-75,80,共5页
提出了一种基于小波包能量熵神经网络的电力系统故障诊断方法。对采集到的故障后电压信号进行3层小波包分解,提取小波包能量熵,然后构造信号的小波包特征向量, 并以此向量作为故障样本对3层BP神经网络进行训练,实现智能化故障诊断。ATP... 提出了一种基于小波包能量熵神经网络的电力系统故障诊断方法。对采集到的故障后电压信号进行3层小波包分解,提取小波包能量熵,然后构造信号的小波包特征向量, 并以此向量作为故障样本对3层BP神经网络进行训练,实现智能化故障诊断。ATP和Matlab仿真结果表明该方法有效可行。 展开更多
关键词 电力系统 小波包能量熵 神经网络 故障诊断 小波变换
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部