Inelastic collisions are the dominant cause of energy loss in radiotherapy.In the energy range around the Bragg peak,single ionization(SI)and single-electron capture(SC)are the primary inelastic collisions that lead t...Inelastic collisions are the dominant cause of energy loss in radiotherapy.In the energy range around the Bragg peak,single ionization(SI)and single-electron capture(SC)are the primary inelastic collisions that lead to energy loss.This study employs the classical trajectory Monte Carlo method to study the SI and SC processes of H_(2)O molecules using He^(2+) and C^(6+) projectiles in the energy range of 10 keV/u to 10 MeV/u.The total cross sections,single differential cross sections,impact parameter dependence of SI and SC,and fragmentation cross sections were investigated.Results illustrate that the cross section for SI is the highest when the projectile energy is close to the Bragg peak energy.When the projectile energy is below the Bragg peak energy,the ionized electrons in the forward direction dominate,and the removal of electrons can be associated with large impact parameters.As the projectile energy increases,the emission angle of the electrons gradually transitions from small angles(60°~120°)to large angles(60°~120°),and the removal of electrons is associated with small impact parameters.The energy distributions of the ionized electron are similar when the projectile energy is equal to,below or above the Bragg peak energy.The fragmentation cross sections after SI and SC in the energy range around the Bragg peak were also estimated.展开更多
The radioisotope actinium-225(^(225)Ac)has been successfully used for targeted alpha therapy in preclinical and clinical applications because of its excellent nuclear characteristics.Medium-and high-energy proton-spal...The radioisotope actinium-225(^(225)Ac)has been successfully used for targeted alpha therapy in preclinical and clinical applications because of its excellent nuclear characteristics.Medium-and high-energy proton-spallation reactions on thorium are the most important methods for producing^(225)Ac.This study examines the possibility of producing^(225)Ac by irradiating thorium oxide with medium-energy protons.Thorium-oxide sheets were irradiated with 40-,50-,60-,70-,and 80-Me V protons on the Associated Proton-beam Experiment Platform(APEP)of the China Spallation Neutron Source(CSNS).The cross sections for the formation of^(225)Ac were measured using the activation method and offline gamma-ray spectrometric technique.The experimental results were compared with the existing data from EXFOR as well as the theoretical data from the TALYS-based evaluated nuclear-data library.Based on the experimental cross section and theoretical calculations,the production yield of^(225)Ac in the irradiated thorium targets was examined.The results showed that APEP can produce sufficient quantities of^(225)Ac for purification and clinical therapy.This work is the first measurement of proton-induced nuclearreaction cross sections at the CSNS APEP.展开更多
Layer regrouping is to divide all the layers into several sets of production series according to the physical properties and recovery percent of layers at high water-cut stage, which is an important technique to impro...Layer regrouping is to divide all the layers into several sets of production series according to the physical properties and recovery percent of layers at high water-cut stage, which is an important technique to improve oil recovery for high water-cut multilayered reservoirs. Dif- ferent regroup scenarios may lead to different production performances. Based on unstable oil-water flow theory, a multilayer commingled reservoir simulator is established by modifying the production split method. Taking into account the differences of layer properties, including per- meability, oil viscosity, and remaining oil saturation, the pseudo flow resistance contrast is proposed to serve as a characteristic index of layer regrouping for high water-cut multilayered reservoirs. The production indices of multi- layered reservoirs with different pseudo flow resistances are predicted with the established model in which the data are taken from the Shengtuo Oilfield. Simulation results show that the pseudo flow resistance contrast should be less than 4 when the layer regrouping is implemented. The K-means clustering method, which is based on the objec- tive function, is used to automatically carry out the layer regrouping process according to pseudo flow resistances. The research result is applied to the IV-VI sand groups of the second member of the Shahejie Formation in the Shengtuo Oilfield, a favorable development performance is obtained, and the oil recovery is enhanced by 6.08 %.展开更多
The neutron-induced total cross sections of natural lead have been measured in a wide energy range(0.3 eV-20 MeV)on the back-streaming white neutron beamline(Back-n)at the China Spallation Neutron Source.Neutron energ...The neutron-induced total cross sections of natural lead have been measured in a wide energy range(0.3 eV-20 MeV)on the back-streaming white neutron beamline(Back-n)at the China Spallation Neutron Source.Neutron energy was determined by the neutron total cross-section spectrometer using the time-of-flight technique.A fast multi-cell fission chamber was used as the neutron detector,and a 10-mm-thick high-purity natural lead sample was employed for the neutron transmission measurements.The on-beam background was determined using Co,In,Ag,and Cd filters.The excitation function of ^(nat)Pb(n,tot)reaction below 20 MeV was calculated using the TALYS-1.96 nuclear-reaction modeling program.The present results were compared with previous results,the evaluated data available in the five major evaluated nuclear data libraries(i.e.,ENDF/B-VIII.0,JEFF-3.3,JENDL-5,CENDL-3.2,and BROND-3.1),and the theoretical calculation curve.Good agreement was found between the new results and those of previous experiments and with the theoretical curves in the corresponding region.This measurement obtained the neutron total cross section of natural lead with good accuracy over a wide energy range and added experimental data in the resonance energy range.This provides more reliable experimental data for nuclear engineering design and nuclear data evaluation of lead.展开更多
Aluminum is the primary structural material in nuclear engineering,and its cross section induced by 14-MeV neutrons is of great significance.To address the issue of insufficient accuracy for the^(27)Al(n,2n)^(26)Al re...Aluminum is the primary structural material in nuclear engineering,and its cross section induced by 14-MeV neutrons is of great significance.To address the issue of insufficient accuracy for the^(27)Al(n,2n)^(26)Al reaction cross section,the activation method and accelerator mass spectrometry(AMS)technique were used to determine the^(27)Al(n,2n)^(26)Al cross section,which could be used as a D-T plasma ion temperature monitor in fusion reactors.At the China Academy of Engineering Physics,neutron activation was performed using a K-400 neutron generator produced by the T(d,n)4He reaction.The^(26)Al∕^(27)Al isotope ratios were measured using the newly installed GYIG 1 MV AMS at the Institute of Geochemistry,Chinese Academy of Sciences.The neutron flux was monitored by measuring the activity of 92mNb produced by the 93Nb(n,2n)92mNb reaction.The measured results were compared with available data in the experimental nuclear reaction database,and the measured values showed a reasonable degree of consistency with partially available literature data.The newly acquired cross-sectional data at 12 neutron energy points through systematic measurements clarified the divergence,which has two different growth trends from the existing experimental values.The obtained results are also compared with the corresponding evaluated database,and the newly calculated excitation functions with TALYS−1.95 and EMPIRE−3.2 codes,the agreement with CENDL−3.2,TENDL-2021 and EMPIRE−3.2 results are generally acceptable.A substantial improvement in the knowledge of the^(27)Al(n,2n)^(26)Al reaction excitation function was obtained in the present work,which will lay the foundation for the diagnosis of the fusion ion temperature,testing of the nuclear physics model,evaluation of nuclear data,etc.展开更多
We present the angular distribution of the ejected electron for single ionization of He by fast proton impact.A fourbody formalism of the three-Coulomb wave is applied to calculate the triple differential cross sectio...We present the angular distribution of the ejected electron for single ionization of He by fast proton impact.A fourbody formalism of the three-Coulomb wave is applied to calculate the triple differential cross sections at several impact energies in the scattering,perpendicular and azimuthal planes.Moreover,the three-body formalism of three-Coulomb,two-Coulomb and first Born approximation models has also been used to study the many-body effect on electron emission and the validity of the models.In the three-Coulomb wave model,the final state wave function incorporates distortion due to the three-body mutual Coulombic interaction.In this formalism,we use an uncorrelated and correlated Born initial state,which consists of a plane wave for the incoming projectile times a two-electron bound state wavefunction of the helium atom representing the 1s^(2)(1S)state.But,in the case of the three-body formalism,the initial state wavefunction consists of a long-range Coulomb distortion for the incoming projectile and one active electron of the He atom described by the Roothaan–Hartree–Fock wavefunction.The structure with a single or two peaks with unequal intensity is observed in the angular distributions of the triple differential cross sections for the different kinematic conditions.In addition,the influence of static electron correlations is investigated using different bound state wavefunctions for the ground state of the He target.In the four-body formalism,the present computations are very fast by reducing a nine-dimensional integral to a two-dimensional real integral.Despite the simplicity and speed of the proposed quadrature,the comparison shows that the obtained results are in reasonable agreement with the experiment and are compatible with those of other theories.展开更多
One of the major innovations awaiting in electron microscopy is full three-dimensional imaging at atomic resolution.Despite the success of aberration correction to deep sub-angstrom lateral resolution,spatial resoluti...One of the major innovations awaiting in electron microscopy is full three-dimensional imaging at atomic resolution.Despite the success of aberration correction to deep sub-angstrom lateral resolution,spatial resolution in depth is still far from atomic resolution.In scanning transmission electron microscopy(STEM),this poor depth resolution is due to the limitation of the illumination angle.To overcome this physical limitation,it is essential to implement a next-generation aberration corrector in STEM that can significantly improve the depth resolution.This review discusses the capability of depth sectioning for three-dimensional imaging combined with large-angle illumination STEM.Furthermore,the statistical analysis approach remarkably improves the depth resolution,making it possible to achieve three-dimensional atomic resolution imaging at oxide surfaces.We will also discuss the future prospects of three-dimensional imaging at atomic resolution by STEM depth sectioning.展开更多
The state-selective cross section data are useful for understanding and modeling the x-ray emission in celestial observations.In the present work,using the cold target recoil ion momentum spectroscopy,for the first ti...The state-selective cross section data are useful for understanding and modeling the x-ray emission in celestial observations.In the present work,using the cold target recoil ion momentum spectroscopy,for the first time we investigated the state-selective single electron capture processes for S^(q+)–He and H_(2)(q=11–15)collision systems at an impact energy of q×20 keV and obtained the relative state-selective cross sections.The results indicate that only a few principal quantum states of the projectile energy level are populated in a single electron capture process.In particular,the increase of the projectile charge state leads to the population of the states with higher principal quantum numbers.It is also shown that the experimental averaged n-shell populations are reproduced well by the over-barrier model.The database is openly available in Science Data Bank at 10.57760/sciencedb.j00113.00091.展开更多
In this note,we prove a logarithmic Sobolev inequality which holds for compact submanifolds without a boundary in manifolds with asymptotically nonnegative sectional curvature.Like the Michale-Simon Sobolev inequality...In this note,we prove a logarithmic Sobolev inequality which holds for compact submanifolds without a boundary in manifolds with asymptotically nonnegative sectional curvature.Like the Michale-Simon Sobolev inequality,this inequality contains a term involving the mean curvature.展开更多
The absolute partial and total cross sections for electron impact ionization of carbon monoxide are reported for electron energies from 350 eV to 8000 eV.The product ions(CO^(+),C^(+),O^(+),CO^(2+),C^(2+),and O^(2+))a...The absolute partial and total cross sections for electron impact ionization of carbon monoxide are reported for electron energies from 350 eV to 8000 eV.The product ions(CO^(+),C^(+),O^(+),CO^(2+),C^(2+),and O^(2+))are measured by employing an ion imaging mass spectrometer and two ion-pair dissociation channels(C^(+)+O^(+)and C^(2+)+O^(+))are identified.The absolute cross sections for producing individual ions and their total,as well as for the ion-pair dissociation channels are obtained by normalizing the data of CO^(+)to that of Ar^(+)from CO-Ar mixture target with a fixed 1:1 ratio.The overall errors are evaluated by considering various kinds of uncertainties.A comprehensive comparison is made with the available data,which shows a good agreement with each other over the energy ranges that are overlapped.This work presents new cross-section data with electron energies above 1000 eV.展开更多
基金supported in part by the National Natural Science Foundation of China(Nos.12105327 and 11775108)the Hunan Provincial Innovation Foundation For Postgraduate(No.QL20220210)the Advanced Energy Science and Technology Guangdong Laboratory.
文摘Inelastic collisions are the dominant cause of energy loss in radiotherapy.In the energy range around the Bragg peak,single ionization(SI)and single-electron capture(SC)are the primary inelastic collisions that lead to energy loss.This study employs the classical trajectory Monte Carlo method to study the SI and SC processes of H_(2)O molecules using He^(2+) and C^(6+) projectiles in the energy range of 10 keV/u to 10 MeV/u.The total cross sections,single differential cross sections,impact parameter dependence of SI and SC,and fragmentation cross sections were investigated.Results illustrate that the cross section for SI is the highest when the projectile energy is close to the Bragg peak energy.When the projectile energy is below the Bragg peak energy,the ionized electrons in the forward direction dominate,and the removal of electrons can be associated with large impact parameters.As the projectile energy increases,the emission angle of the electrons gradually transitions from small angles(60°~120°)to large angles(60°~120°),and the removal of electrons is associated with small impact parameters.The energy distributions of the ionized electron are similar when the projectile energy is equal to,below or above the Bragg peak energy.The fragmentation cross sections after SI and SC in the energy range around the Bragg peak were also estimated.
基金supported by the National Natural Science Foundation of China(No.12075135)the National Natural Science Foundation of China(No.12375127)。
文摘The radioisotope actinium-225(^(225)Ac)has been successfully used for targeted alpha therapy in preclinical and clinical applications because of its excellent nuclear characteristics.Medium-and high-energy proton-spallation reactions on thorium are the most important methods for producing^(225)Ac.This study examines the possibility of producing^(225)Ac by irradiating thorium oxide with medium-energy protons.Thorium-oxide sheets were irradiated with 40-,50-,60-,70-,and 80-Me V protons on the Associated Proton-beam Experiment Platform(APEP)of the China Spallation Neutron Source(CSNS).The cross sections for the formation of^(225)Ac were measured using the activation method and offline gamma-ray spectrometric technique.The experimental results were compared with the existing data from EXFOR as well as the theoretical data from the TALYS-based evaluated nuclear-data library.Based on the experimental cross section and theoretical calculations,the production yield of^(225)Ac in the irradiated thorium targets was examined.The results showed that APEP can produce sufficient quantities of^(225)Ac for purification and clinical therapy.This work is the first measurement of proton-induced nuclearreaction cross sections at the CSNS APEP.
基金supported by the Program for Changjiang Scholars and Innovative Research Team in University(IRT1294)the China National Science and Technology Major Projects(Grant No:2016ZX05011)
文摘Layer regrouping is to divide all the layers into several sets of production series according to the physical properties and recovery percent of layers at high water-cut stage, which is an important technique to improve oil recovery for high water-cut multilayered reservoirs. Dif- ferent regroup scenarios may lead to different production performances. Based on unstable oil-water flow theory, a multilayer commingled reservoir simulator is established by modifying the production split method. Taking into account the differences of layer properties, including per- meability, oil viscosity, and remaining oil saturation, the pseudo flow resistance contrast is proposed to serve as a characteristic index of layer regrouping for high water-cut multilayered reservoirs. The production indices of multi- layered reservoirs with different pseudo flow resistances are predicted with the established model in which the data are taken from the Shengtuo Oilfield. Simulation results show that the pseudo flow resistance contrast should be less than 4 when the layer regrouping is implemented. The K-means clustering method, which is based on the objec- tive function, is used to automatically carry out the layer regrouping process according to pseudo flow resistances. The research result is applied to the IV-VI sand groups of the second member of the Shahejie Formation in the Shengtuo Oilfield, a favorable development performance is obtained, and the oil recovery is enhanced by 6.08 %.
基金This work is supported by the National Natural Science Foundation of China(No.12375296)the Key Laboratory of Nuclear Data Foundation(No.JCKY2022201C153)+2 种基金the Natural Science Foundation of Hunan Province of China(Nos.2021JJ40444,2020RC3054)the Youth Innovation Promotion Association CAS(No.2023014)the National Key Research and Development Plan(No.2022YFA1603303).
文摘The neutron-induced total cross sections of natural lead have been measured in a wide energy range(0.3 eV-20 MeV)on the back-streaming white neutron beamline(Back-n)at the China Spallation Neutron Source.Neutron energy was determined by the neutron total cross-section spectrometer using the time-of-flight technique.A fast multi-cell fission chamber was used as the neutron detector,and a 10-mm-thick high-purity natural lead sample was employed for the neutron transmission measurements.The on-beam background was determined using Co,In,Ag,and Cd filters.The excitation function of ^(nat)Pb(n,tot)reaction below 20 MeV was calculated using the TALYS-1.96 nuclear-reaction modeling program.The present results were compared with previous results,the evaluated data available in the five major evaluated nuclear data libraries(i.e.,ENDF/B-VIII.0,JEFF-3.3,JENDL-5,CENDL-3.2,and BROND-3.1),and the theoretical calculation curve.Good agreement was found between the new results and those of previous experiments and with the theoretical curves in the corresponding region.This measurement obtained the neutron total cross section of natural lead with good accuracy over a wide energy range and added experimental data in the resonance energy range.This provides more reliable experimental data for nuclear engineering design and nuclear data evaluation of lead.
基金the Open Project of Guangxi Key Laboratory of Nuclear Physics and Nuclear Technology(NLK 2022-04)the Central Government Guidance Funds for Local Scientific and Technological Development,China(No.Guike,ZY22096024)+1 种基金the National Natural Science Foundation of China(12065003)Guangxi Key R&D Project(2023AB07029).
文摘Aluminum is the primary structural material in nuclear engineering,and its cross section induced by 14-MeV neutrons is of great significance.To address the issue of insufficient accuracy for the^(27)Al(n,2n)^(26)Al reaction cross section,the activation method and accelerator mass spectrometry(AMS)technique were used to determine the^(27)Al(n,2n)^(26)Al cross section,which could be used as a D-T plasma ion temperature monitor in fusion reactors.At the China Academy of Engineering Physics,neutron activation was performed using a K-400 neutron generator produced by the T(d,n)4He reaction.The^(26)Al∕^(27)Al isotope ratios were measured using the newly installed GYIG 1 MV AMS at the Institute of Geochemistry,Chinese Academy of Sciences.The neutron flux was monitored by measuring the activity of 92mNb produced by the 93Nb(n,2n)92mNb reaction.The measured results were compared with available data in the experimental nuclear reaction database,and the measured values showed a reasonable degree of consistency with partially available literature data.The newly acquired cross-sectional data at 12 neutron energy points through systematic measurements clarified the divergence,which has two different growth trends from the existing experimental values.The obtained results are also compared with the corresponding evaluated database,and the newly calculated excitation functions with TALYS−1.95 and EMPIRE−3.2 codes,the agreement with CENDL−3.2,TENDL-2021 and EMPIRE−3.2 results are generally acceptable.A substantial improvement in the knowledge of the^(27)Al(n,2n)^(26)Al reaction excitation function was obtained in the present work,which will lay the foundation for the diagnosis of the fusion ion temperature,testing of the nuclear physics model,evaluation of nuclear data,etc.
基金Project supported by the Science and Engineering Research Board(SERB),New Delhi,India(Grant No.CRG/2022/001668).
文摘We present the angular distribution of the ejected electron for single ionization of He by fast proton impact.A fourbody formalism of the three-Coulomb wave is applied to calculate the triple differential cross sections at several impact energies in the scattering,perpendicular and azimuthal planes.Moreover,the three-body formalism of three-Coulomb,two-Coulomb and first Born approximation models has also been used to study the many-body effect on electron emission and the validity of the models.In the three-Coulomb wave model,the final state wave function incorporates distortion due to the three-body mutual Coulombic interaction.In this formalism,we use an uncorrelated and correlated Born initial state,which consists of a plane wave for the incoming projectile times a two-electron bound state wavefunction of the helium atom representing the 1s^(2)(1S)state.But,in the case of the three-body formalism,the initial state wavefunction consists of a long-range Coulomb distortion for the incoming projectile and one active electron of the He atom described by the Roothaan–Hartree–Fock wavefunction.The structure with a single or two peaks with unequal intensity is observed in the angular distributions of the triple differential cross sections for the different kinematic conditions.In addition,the influence of static electron correlations is investigated using different bound state wavefunctions for the ground state of the He target.In the four-body formalism,the present computations are very fast by reducing a nine-dimensional integral to a two-dimensional real integral.Despite the simplicity and speed of the proposed quadrature,the comparison shows that the obtained results are in reasonable agreement with the experiment and are compatible with those of other theories.
基金Project supported by JST-PRESTO (Grant No.JPMJPR1871)JST-FOREST (Grant No.JPMJFR2033)+2 种基金JST-ERATO (Grant No.JPMJER2202)KAKENHI JSPS (Grant Nos.JP19H05788,JP21H01614,and JP24H00373)“Next Generation Electron Microscopy”social cooperation program at the University of Tokyo。
文摘One of the major innovations awaiting in electron microscopy is full three-dimensional imaging at atomic resolution.Despite the success of aberration correction to deep sub-angstrom lateral resolution,spatial resolution in depth is still far from atomic resolution.In scanning transmission electron microscopy(STEM),this poor depth resolution is due to the limitation of the illumination angle.To overcome this physical limitation,it is essential to implement a next-generation aberration corrector in STEM that can significantly improve the depth resolution.This review discusses the capability of depth sectioning for three-dimensional imaging combined with large-angle illumination STEM.Furthermore,the statistical analysis approach remarkably improves the depth resolution,making it possible to achieve three-dimensional atomic resolution imaging at oxide surfaces.We will also discuss the future prospects of three-dimensional imaging at atomic resolution by STEM depth sectioning.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0402400)the National Natural Science Foundation of China(Grant Nos.11974358 and 11934004)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB34020000)the Heavy Ion Research Facility in Lanzhou(HIRFL).
文摘The state-selective cross section data are useful for understanding and modeling the x-ray emission in celestial observations.In the present work,using the cold target recoil ion momentum spectroscopy,for the first time we investigated the state-selective single electron capture processes for S^(q+)–He and H_(2)(q=11–15)collision systems at an impact energy of q×20 keV and obtained the relative state-selective cross sections.The results indicate that only a few principal quantum states of the projectile energy level are populated in a single electron capture process.In particular,the increase of the projectile charge state leads to the population of the states with higher principal quantum numbers.It is also shown that the experimental averaged n-shell populations are reproduced well by the over-barrier model.The database is openly available in Science Data Bank at 10.57760/sciencedb.j00113.00091.
基金Supported by the NSFC(11771087,12171091 and 11831005)。
文摘In this note,we prove a logarithmic Sobolev inequality which holds for compact submanifolds without a boundary in manifolds with asymptotically nonnegative sectional curvature.Like the Michale-Simon Sobolev inequality,this inequality contains a term involving the mean curvature.
基金Project supported by the National Key Research and Development Program of China (Grant No.2022YFA1602502)the National Natural Science Foundation of China (Grant No.12127804)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos.XDB34000000)。
文摘The absolute partial and total cross sections for electron impact ionization of carbon monoxide are reported for electron energies from 350 eV to 8000 eV.The product ions(CO^(+),C^(+),O^(+),CO^(2+),C^(2+),and O^(2+))are measured by employing an ion imaging mass spectrometer and two ion-pair dissociation channels(C^(+)+O^(+)and C^(2+)+O^(+))are identified.The absolute cross sections for producing individual ions and their total,as well as for the ion-pair dissociation channels are obtained by normalizing the data of CO^(+)to that of Ar^(+)from CO-Ar mixture target with a fixed 1:1 ratio.The overall errors are evaluated by considering various kinds of uncertainties.A comprehensive comparison is made with the available data,which shows a good agreement with each other over the energy ranges that are overlapped.This work presents new cross-section data with electron energies above 1000 eV.