In order to test the klystrons operated at a frequency of 3.7 GHz in a continuous wave (CW) mode, a type of water load to absorb its power up to 750 kW is presented. The distilled water sealed with an RF ceramic win...In order to test the klystrons operated at a frequency of 3.7 GHz in a continuous wave (CW) mode, a type of water load to absorb its power up to 750 kW is presented. The distilled water sealed with an RF ceramic window is used as the absorbent. At a frequency range of 70 MHz, the VSWR (Voltage Standing Wave Ratio) is below 1.2, and the rise in temperature of water is about 30 ℃ at the highest power level.展开更多
In this paper, the effect of green water impact on a flexible structure is studied based on three-step computational fluid dynamics(CFD)–boundary element method(BEM)–finite element method(FEM) approach. The impact d...In this paper, the effect of green water impact on a flexible structure is studied based on three-step computational fluid dynamics(CFD)–boundary element method(BEM)–finite element method(FEM) approach. The impact due to shipping of water on the deck of the vessel is computed using commercial CFD software and used as an external force in coupled BEM-FEM solver. Other hydrodynamic forces such as radiation, diffraction, and Froude-Krylov forces acting on the structure are evaluated using 3 D time domain panel method. To capture the structural responses such as bending moment and shear force, 1 D finite element method is developed. Moreover, a direct integration scheme based on the Newmark–Beta method is employed to get the structural velocity,displacement, etc., at each time step. To check the effect of the green water impact on the structure, a rectangular barge without forward speed is taken for the analysis. The influence is studied in terms of bending moment, shear force, etc. Results show that the effect of green water impact on the bow region can be severe in extreme seas and lead to various structural damages. Similarly,it is also verified that vessel motion affects green water loading significantly and therefore one must consider its effect while designing a vessel.展开更多
Demand response(DR) is gaining more and more importance in the architecture of power systems in a context of flexible loads and high share of intermittent generation. Changes in electricity markets regulation in sever...Demand response(DR) is gaining more and more importance in the architecture of power systems in a context of flexible loads and high share of intermittent generation. Changes in electricity markets regulation in several countries have recently enabled an effective integration of DR mechanisms in power systems. Through its flexible components(pumps, tanks), drinking water systems are suitable candidates for energy-efficient DR mechanisms. However, these systems are often managed independently of power system operation for both economic and operational reasons. Indeed, a sufficient level of economic viability and water demands risk management are necessary for water utilities to integrate their flexibilities to power system operation. In this paper,we proposed a mathematical model for optimizing pump schedules in water systems while trading DR blocs in a spot power market during peak times. Uncertainties about water demands were considered in the mathematical model allowing to propose power reductions covering the potential risk of real-time water demand forecasting inaccuracy.Numerical results were discussed on a real water system in France, demonstrating both economic and ecological benefits.展开更多
An effective oxygen evolution electrode with Ir0.6Sn0.4O2 was designed for proton exchange membrane(PEM)water electrolyzers.The anode catalyst layer exhibits a jagged structure with smaller particles and pores,which p...An effective oxygen evolution electrode with Ir0.6Sn0.4O2 was designed for proton exchange membrane(PEM)water electrolyzers.The anode catalyst layer exhibits a jagged structure with smaller particles and pores,which provide more active sites and mass transportation channels.The prepared IrSn electrode showed a cell voltage of 1.96 V at 2.0 A cm^-2 with Ir loading as low as 0.294 mg cm^-2.Furthermore,Ir Sn electrode with different anode catalyst loadings was investigated.The IrS n electrode indicates higher mass current and more stable cell voltage than the commercial Ir Black electrode at low loading.展开更多
空心弹是一种具有通孔结构的新型射弹,与相同口径的实心射弹相比,阻力更小,在同等装药量的条件下具有初速高的优点,其入水时呈现复杂的入水流体动力学和弹道特性.文章基于雷诺时均Navier-Stokes方程、VOF(volume of fluid)多相流模型、S...空心弹是一种具有通孔结构的新型射弹,与相同口径的实心射弹相比,阻力更小,在同等装药量的条件下具有初速高的优点,其入水时呈现复杂的入水流体动力学和弹道特性.文章基于雷诺时均Navier-Stokes方程、VOF(volume of fluid)多相流模型、SST(shear stress transfer)k-ω湍流模型、Schnerr-Sauer空化模型、六自由度模型和重叠网格技术对空心弹高速入水进行了数值模拟,研究了入水速度和角度对空心弹入水空泡、空化、载荷和弹道稳定性的影响.将数值计算结果与实验结果进行对照,空泡形态和质心轨迹曲线与实验结果吻合较好,验证了数值模拟方法的可行性.结果表明:空心弹入水速度对空泡的大小和空泡内空化的程度影响较大,随着入水速度越高,空泡也越大,空化越明显,弹体的速度衰减越快,弹道越不稳定,弹体失稳越早;随着入水速度越低,空心弹的阻力和升力系数越小,弹体运动越稳定.入水角度对空泡的大小及弹体的偏转程度有较大影响,入水角度越大,弹体偏转时刻的空泡越大,空泡内的空化越明显,弹体头部的高压区域越小,阻力、升力和力矩系数越小,相同时间内弹体的偏转角越小,弹体姿态越稳定.入水角度越小,弹体的偏转角增加的越快,弹体运动越不稳定.展开更多
文摘In order to test the klystrons operated at a frequency of 3.7 GHz in a continuous wave (CW) mode, a type of water load to absorb its power up to 750 kW is presented. The distilled water sealed with an RF ceramic window is used as the absorbent. At a frequency range of 70 MHz, the VSWR (Voltage Standing Wave Ratio) is below 1.2, and the rise in temperature of water is about 30 ℃ at the highest power level.
基金supported by Naval Research Board,India under Project No.NRB-344/HYD/14-15
文摘In this paper, the effect of green water impact on a flexible structure is studied based on three-step computational fluid dynamics(CFD)–boundary element method(BEM)–finite element method(FEM) approach. The impact due to shipping of water on the deck of the vessel is computed using commercial CFD software and used as an external force in coupled BEM-FEM solver. Other hydrodynamic forces such as radiation, diffraction, and Froude-Krylov forces acting on the structure are evaluated using 3 D time domain panel method. To capture the structural responses such as bending moment and shear force, 1 D finite element method is developed. Moreover, a direct integration scheme based on the Newmark–Beta method is employed to get the structural velocity,displacement, etc., at each time step. To check the effect of the green water impact on the structure, a rectangular barge without forward speed is taken for the analysis. The influence is studied in terms of bending moment, shear force, etc. Results show that the effect of green water impact on the bow region can be severe in extreme seas and lead to various structural damages. Similarly,it is also verified that vessel motion affects green water loading significantly and therefore one must consider its effect while designing a vessel.
文摘Demand response(DR) is gaining more and more importance in the architecture of power systems in a context of flexible loads and high share of intermittent generation. Changes in electricity markets regulation in several countries have recently enabled an effective integration of DR mechanisms in power systems. Through its flexible components(pumps, tanks), drinking water systems are suitable candidates for energy-efficient DR mechanisms. However, these systems are often managed independently of power system operation for both economic and operational reasons. Indeed, a sufficient level of economic viability and water demands risk management are necessary for water utilities to integrate their flexibilities to power system operation. In this paper,we proposed a mathematical model for optimizing pump schedules in water systems while trading DR blocs in a spot power market during peak times. Uncertainties about water demands were considered in the mathematical model allowing to propose power reductions covering the potential risk of real-time water demand forecasting inaccuracy.Numerical results were discussed on a real water system in France, demonstrating both economic and ecological benefits.
基金financially supported by the National Natural Science Foundation of China(U1664259)State Grid Corporation of China(No.SGTYHT/15-JS-191,PEMWE MEA Preparation and degradation mechanism)
文摘An effective oxygen evolution electrode with Ir0.6Sn0.4O2 was designed for proton exchange membrane(PEM)water electrolyzers.The anode catalyst layer exhibits a jagged structure with smaller particles and pores,which provide more active sites and mass transportation channels.The prepared IrSn electrode showed a cell voltage of 1.96 V at 2.0 A cm^-2 with Ir loading as low as 0.294 mg cm^-2.Furthermore,Ir Sn electrode with different anode catalyst loadings was investigated.The IrS n electrode indicates higher mass current and more stable cell voltage than the commercial Ir Black electrode at low loading.
文摘空心弹是一种具有通孔结构的新型射弹,与相同口径的实心射弹相比,阻力更小,在同等装药量的条件下具有初速高的优点,其入水时呈现复杂的入水流体动力学和弹道特性.文章基于雷诺时均Navier-Stokes方程、VOF(volume of fluid)多相流模型、SST(shear stress transfer)k-ω湍流模型、Schnerr-Sauer空化模型、六自由度模型和重叠网格技术对空心弹高速入水进行了数值模拟,研究了入水速度和角度对空心弹入水空泡、空化、载荷和弹道稳定性的影响.将数值计算结果与实验结果进行对照,空泡形态和质心轨迹曲线与实验结果吻合较好,验证了数值模拟方法的可行性.结果表明:空心弹入水速度对空泡的大小和空泡内空化的程度影响较大,随着入水速度越高,空泡也越大,空化越明显,弹体的速度衰减越快,弹道越不稳定,弹体失稳越早;随着入水速度越低,空心弹的阻力和升力系数越小,弹体运动越稳定.入水角度对空泡的大小及弹体的偏转程度有较大影响,入水角度越大,弹体偏转时刻的空泡越大,空泡内的空化越明显,弹体头部的高压区域越小,阻力、升力和力矩系数越小,相同时间内弹体的偏转角越小,弹体姿态越稳定.入水角度越小,弹体的偏转角增加的越快,弹体运动越不稳定.