The flow of the weak electrolyte solution can be controlled by Lorentz force achieved with the suitable magnetic and electric fields, and it has the advantages of vortex street suppression, drag reduction, lift enhanc...The flow of the weak electrolyte solution can be controlled by Lorentz force achieved with the suitable magnetic and electric fields, and it has the advantages of vortex street suppression, drag reduction, lift enhancement and oscillatory suppression for the flow over a bluff body. The electro-magnetic control of vortex-induced vibration (VIV) of a circular cylinder in the shear flow was investigated numerically in the exponential-polar coordinates attached on the moving cylinder for Re=150. With the effect of background vorticity, the vortex street of VIV cylinder was composed of two parallel rows with an opposite sign of the vortices which inclines toward the lower side and the strength of upper vortex is larger than that of lower vortex. The lift force vibrated periodically with the effect of vortex shedding and the mean value was negative due to the background vorticity. The Lorentz force for controlling the VIV cylinder was classified into the field Lorentz force and the wall Lorentz force. The field Lorentz force suppresses the lift oscillation, and in turn, suppresses the VIV, whereas the wall Lorentz force increases the lift.展开更多
The Lorentz force generated by electromagnetic field on the surface of the cylinder in the electrolyte solution may modify the structure of the flow boundary layer effectively. The transient control process of Lorentz...The Lorentz force generated by electromagnetic field on the surface of the cylinder in the electrolyte solution may modify the structure of the flow boundary layer effectively. The transient control process of Lorentz force is investigated experimentally for lift amplification and vibration suppression. The experiments are conducted in a rotating annular tank filled with a low-conducting electrolyte. A cylinder with an electro-magnetic actuator is placed into the electrolyte. The lift force of cylinder is measured using the strain gages attached to a fixed beam, and the flow fields are visualized by the dye markers. The results show that the upper vortex on the cylinder is suppressed, and the wake becomes a line and leans to the lower side under the action of upside Lorentz force while the lower vortex on the cylinder is suppressed and limited in a small region. Therefore, the value of lift increases with the variation of flow field. However, the vortexes on the cylinder are suppressed fully under the action of symmetrical Lorentz force which leads to the suppression of lift oscillation and then the vibration of cylinder are suppressed fully.展开更多
基金Sponsored by the National Nature Science Foundation of China (11202102,11172140)
文摘The flow of the weak electrolyte solution can be controlled by Lorentz force achieved with the suitable magnetic and electric fields, and it has the advantages of vortex street suppression, drag reduction, lift enhancement and oscillatory suppression for the flow over a bluff body. The electro-magnetic control of vortex-induced vibration (VIV) of a circular cylinder in the shear flow was investigated numerically in the exponential-polar coordinates attached on the moving cylinder for Re=150. With the effect of background vorticity, the vortex street of VIV cylinder was composed of two parallel rows with an opposite sign of the vortices which inclines toward the lower side and the strength of upper vortex is larger than that of lower vortex. The lift force vibrated periodically with the effect of vortex shedding and the mean value was negative due to the background vorticity. The Lorentz force for controlling the VIV cylinder was classified into the field Lorentz force and the wall Lorentz force. The field Lorentz force suppresses the lift oscillation, and in turn, suppresses the VIV, whereas the wall Lorentz force increases the lift.
基金Sponsored by the National Nature Science Foundation of China ( 11202102)pecialized Research Fund for Doctoral Program of High Educatio n ( 20123219120050)
文摘The Lorentz force generated by electromagnetic field on the surface of the cylinder in the electrolyte solution may modify the structure of the flow boundary layer effectively. The transient control process of Lorentz force is investigated experimentally for lift amplification and vibration suppression. The experiments are conducted in a rotating annular tank filled with a low-conducting electrolyte. A cylinder with an electro-magnetic actuator is placed into the electrolyte. The lift force of cylinder is measured using the strain gages attached to a fixed beam, and the flow fields are visualized by the dye markers. The results show that the upper vortex on the cylinder is suppressed, and the wake becomes a line and leans to the lower side under the action of upside Lorentz force while the lower vortex on the cylinder is suppressed and limited in a small region. Therefore, the value of lift increases with the variation of flow field. However, the vortexes on the cylinder are suppressed fully under the action of symmetrical Lorentz force which leads to the suppression of lift oscillation and then the vibration of cylinder are suppressed fully.
文摘利用线性弹簧斜向布置的几何非线性产生非线性恢复力,提出了引入非线性恢复力的水下涡激振动(VIV)发电系统.该系统通过单向轴承、齿轮齿条机构、增速箱和转子发电机,将钝体横向往复运动转变为发电机的单向旋转运动.建立了综合考虑流-固-电耦合的水下涡激振动发电系统动力学方程,利用非线性振动理论,获得了钝体非线性振动的静态平衡点分岔和不同稳态运动的区间,重点研究了PF-2SN和2PF-2SN两种静态分岔情况下钝体的非线性动力学行为,获得了不同流速下钝体振动的Poincaré映射、相图和幅频图,分析了钝体在单周期小幅运动、大幅混沌运动和准周期大幅运动等运动模式下的振动行为及运动规律,并计算了在钝体处于不同稳态运动时的发电机功率.结果表明:在PF-2SN分岔方式中,系统处于二稳态运动时的振动和发电具有明显优势,平均振幅比为2.18、发电功率最大值为24.45 W.而在2PF-2SN分岔方式中,系统处于三稳态运动时的振动和发电更具优势,平均振幅比为1.98、发电功率最大值为18.32 W.