期刊文献+
共找到3,682篇文章
< 1 2 185 >
每页显示 20 50 100
Recent advances of metal vacancies in energy and environmental catalysis:Synthesis,characterization,and roles
1
作者 Long Sun Shunzheng Zhao +4 位作者 Sirui Gao Ronghui Zhu Yiran Tan Xiaolong Tang Honghong Yi 《Green Energy & Environment》 SCIE EI CAS 2025年第1期84-108,共25页
With the ongoing depletion of fossil fuels,energy and environmental issues have become increasingly critical,necessitating the search for effective solutions.Catalysis,being one of the hallmarks of modern industry,off... With the ongoing depletion of fossil fuels,energy and environmental issues have become increasingly critical,necessitating the search for effective solutions.Catalysis,being one of the hallmarks of modern industry,offers a promising avenue for researchers.However,the question of how to significantly enhance the performance of catalysts has gradually drawn the attention of scholars.Defect engineering,a commonly employed and effective approach to improve catalyst activity,has become a significant research focus in the catalysis field in recent years.Nonmetal vacancies have received extensive attention due to their simple form.Consequently,exploration of metal vacancies has remained stagnant for a considerable period,resulting in a scarcity of comprehensive reviews on this topic.Therefore,based on the latest research findings,this paper summarizes and consolidates the construction strategies for metal vacancies,characterization techniques,and their roles in typical energy and environmental catalytic reactions.Additionally,it outlines potential challenges in the future,aiming to provide valuable references for researchers interested in investigating metal vacancies. 展开更多
关键词 Metal vacancies catalysis Construction strategies Characterization techniques ROLES
在线阅读 下载PDF
Ordered mesoporous materials for water pollution treatment:Adsorption and catalysis 被引量:2
2
作者 Peng Zhang Mingming He +4 位作者 Wei Teng Fukuan Li Xinyuan Qiu Kexun Li Hao Wang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第8期1239-1256,共18页
To meet the growing emission of water contaminants,the development of new materials that enhance the efficiency of the water treatment system is urgent.Ordered mesoporous materials provide opportunities in environment... To meet the growing emission of water contaminants,the development of new materials that enhance the efficiency of the water treatment system is urgent.Ordered mesoporous materials provide opportunities in environmental processing applications due to their exceptionally high surface areas,large pore sizes,and enough pore volumes.These properties might enhance the performance of materials concerning adsorption/catalysis capability,durability,and stability.In this review,we enumerate the ordered mesoporous materials as adsorbents/catalysts and their modifications in water pollution treatment from the past decade,including heavy metals(Hg^(2+),Pb^(2+),Cd^(2+),Cr^(6+),etc.),toxic anions(nitrate,phosphate,fluoride,etc.),and organic contaminants(organic dyes,antibiotics,etc.).These contributions demonstrate a deep understanding of the synergistic effect between the incorporated framework and homogeneous active centers.Besides,the challenges and perspectives of the future developments of ordered mesoporous materials in wastewater treatment are proposed.This work provides a theoretical basis and complete summary for the application of ordered mesoporous materials in the removal of contaminants from aqueous solutions. 展开更多
关键词 Water pollution treatment Ordered mesoporous materials Toxic contaminants ADSORPTION catalysis
在线阅读 下载PDF
Cell-free biocatalysis coupled with photo-catalysis and electro-catalysis: Efficient CO_(2)-to-chemical conversion
3
作者 Junzhu Yang Chi-Kit Sou Yuan Lu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第9期1366-1383,共18页
The increasing atmospheric carbon dioxide (CO_(2)) concentration has exposed a series of crises in the earth's ecological environment.How to effectively fix and convert carbon dioxide into products with added valu... The increasing atmospheric carbon dioxide (CO_(2)) concentration has exposed a series of crises in the earth's ecological environment.How to effectively fix and convert carbon dioxide into products with added value has attracted the attention of many researchers.Cell-free enzyme catalytic system coupled with electrical and light have been a promising attempt in the field of biological carbon fixation in recent years.In this review,the research progresses of photoenzyme catalysis,electroenzyme catalysis and photo-electroenzyme catalysis for converting carbon dioxide into chemical products in cell-free systems are systematically summarized.We focus on reviewing and comparing various coupling methods and principles of photoenzyme catalysis and electroenzyme catalysis in cell-free systems,especially the materials used in the construction of the coupling system,and analyze and point out the characteristics and possible problems of different coupling methods.Finally,we discuss the major challenges and prospects of coupling physical signals and cell-free enzymatic catalytic systems in the field of CO_(2) fixation,suggesting possible strategies to improve the carbon sequestration capacity of such systems. 展开更多
关键词 CO_(2)fixation Cell-free system Enzyme Photoenzyme catalysis Electroenzyme catalysis
在线阅读 下载PDF
Non-Gaussian quantum states generated via quantum catalysis and their statistical properties
4
作者 张晓燕 杨春燕 +1 位作者 王继锁 孟祥国 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期332-337,共6页
A new kind of non-Gaussian quantum catalyzed state is proposed via multiphoton measurements and two-mode squeezing as an input of thermal state.The characteristics of the generated multiphoton catalysis output state d... A new kind of non-Gaussian quantum catalyzed state is proposed via multiphoton measurements and two-mode squeezing as an input of thermal state.The characteristics of the generated multiphoton catalysis output state depends on the thermal parameter,catalyzed photon number and squeezing parameter.We then analyze the nonclassical properties by examining the photon number distribution,photocount distribution and partial negativity of the Wigner function.Our findings indicate that nonclassicality can be achieved through the implementation of multiphoton catalysis operations and modulated by the thermal parameter,catalyzed photon number and squeezing parameter. 展开更多
关键词 two-mode squeezing multiphoton catalysis NONCLASSICALITY Wigner function
在线阅读 下载PDF
Structure design and electrochemical properties of carbon-based single atom catalysts in energy catalysis:A review
5
作者 Shuqi Li Xincheng Lu +8 位作者 Shuling Liu Jingjing Zhou Yanyan Liu Huanhuan Zhang Ruofan Shen Kang Sun Jianchun Jiang Yongfeng Wang Baojun Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期196-236,共41页
Single atom catalysts(SACs) possessing regulated electronic structure, high atom utilization, and superior catalytic efficiency have been studied in almost all fields in recent years. Carbon-based supporting SACs are ... Single atom catalysts(SACs) possessing regulated electronic structure, high atom utilization, and superior catalytic efficiency have been studied in almost all fields in recent years. Carbon-based supporting SACs are becoming popular materials because of their low cost, high electron conductivity, and controllable surface property. At the stage of catalysts preparation, the rational design of active sites is necessary for the substantial improvement of activity of catalysts. To date, the reported design strategies are mainly about synthesis mechanism and synthetic method. The level of understanding of design strategies of carbon-based single atom catalysts is requiring deep to be paved. The design strategies about manufacturing defects and coordination modulation of catalysts are presented. The design strategies are easy to carry out in the process of drawing up preparation routes. The components of carbon-based SACs can be divided into two parts: active site and carbon skeleton. In this review, the manufacture of defects and coordination modulation of two parts are introduced, respectively. The structure features and design strategies from the active sites and carbon skeletons to the overall catalysts are deeply discussed.Then, the structural design of different nano-carbon SACs is introduced systematically. The characterization of active site and carbon skeleton and the detailed mechanism of reaction process are summarized and analyzed. Next, the applications in the field of electrocatalysis for oxygen conversion and hydrogen conversion are illustrated. The relationships between the superior performance and the structure of active sites or carbon skeletons are discussed. Finally, the conclusion of this review and prospects on the abundant space for further promotion in broader fields are depicted. This review highlights the design and preparation thoughts from the parts to the whole. The detailed and systematic discussion will provide useful guidance for design of SACs for readers. 展开更多
关键词 Carbon materials Coordination chemistry Defective structure Energy catalysis Single atom catalysts
在线阅读 下载PDF
Cobalt phthalocyanine promoted copper catalysts toward enhanced electro reduction of CO_(2)to C_(2):Synergistic catalysis or tandem catalysis?
6
作者 Yan Luo Jun Yang +6 位作者 Jundi Qin Kanghua Miao Dong Xiang Aidar Kuchkaev Dmitry Yakhvarov Chuansheng Hu Xiongwu Kang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期499-507,共9页
The activity and selectivity of electrocatalytic CO_(2)reduction reaction(CO_(2)RR)to C_(2)products on metal catalysts can be regulated by molecular surfactants.However,the mechanism behind it remains elusive and deba... The activity and selectivity of electrocatalytic CO_(2)reduction reaction(CO_(2)RR)to C_(2)products on metal catalysts can be regulated by molecular surfactants.However,the mechanism behind it remains elusive and debatable.Herein,copper nanowires(Cu NWs)were fabricated and decorated with cobalt phthalocyanine(CoPc).The electronic interaction between the Cu NWs,CoPc,CO_(2) and CO_(2)RR intermediates were explored by density functional theory(DFT)calculations.It was found that the selectivity and activity of CO_(2)RR towards C_(2)products on Cu NWs were considerably enhanced from 35.2%to 69.9%by surface decoration of CoPc.DFT calculations revealed that CO_(2)RR can proceed in the interphase between Cu substrate and CoPc,and the CO_(2)RR intermediates could synergistically bond with both Cu and Co metal centre in CuNWs-CoPc,which favours the adsorption of CO_(2),CO and CO_(2)RR intermediates,thus reducing the free energy for CO-COcoupling towards C_(2)products.The synergistic interaction was further extended to phthalocyanine(Pc)and other metal phthalocyanine derivatives(MPc),where a relatively weaker synergistic interaction of COintermediates with MPc and Cu substrate and only a slight enhancement of CO_(2)RR towards C_(2) products were observed.This study demonstrates a synergistic catalysis pathway for CO_(2)RR,a novel perspective in interpreting the role of CoPc in enhancing the activity and selectivity of CO_(2)RR on Cu NWs,in contrast to the conventional tandem catalysis mechanism. 展开更多
关键词 CO_(2)reduction reaction Raman spectroscopy Synergistic catalysis DFT calculation
在线阅读 下载PDF
New paths and research directions in CO_(2) conversion by electro-, photoand plasma catalysis
7
作者 Claudio Ampelli Maria L.Carreon Yuefeng Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第12期300-301,共2页
CO_(2) conversion into value-added products by electro-, photoand plasma catalysis under mild operating conditions(ambient temperature and pressure) is an emerging area to achieve carbon circularity by producing chemi... CO_(2) conversion into value-added products by electro-, photoand plasma catalysis under mild operating conditions(ambient temperature and pressure) is an emerging area to achieve carbon circularity by producing chemicals and fuels using directly renewable energy. Among all CO_(2) conversion approaches, the electrocatalytic reduction of CO_(2) is the most mature technology, capable of achieving high productivity(i.e. high current densities) at large scale, especially for producing carbon monoxide(CO), but with many examples showing selectivity to C_(2) carbon products. 展开更多
关键词 New paths and research directions in CO_(2)conversion by electro photoand plasma catalysis
在线阅读 下载PDF
Cooperation of nitrogen-doping and catalysis to improve the Li-ion storage performance of lignin-based hard carbon 被引量:5
8
作者 Zhewei Yang Huajun Guo +4 位作者 Feifei Li Xinhai Li Zhixing Wang Lizhi Cui Jiexi Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第5期1390-1396,共7页
Hard carbon draws great interests as anode material in lithium ion batteries (LIBs) due to its high the- oretical capacity, high rate capability and abundance of its precursors. Herein we firstly synthesize the lign... Hard carbon draws great interests as anode material in lithium ion batteries (LIBs) due to its high the- oretical capacity, high rate capability and abundance of its precursors. Herein we firstly synthesize the lignin-melamine resins by grafting melamine onto lignin. Afterwards, nitrogen doped hard carbon is pre- pared by the pyrolysis of lignin-melamine resins with the aid of catalyst (Ni(NO_3)2·6H_2O) at 1000 ℃. Compared with the samples without nitrogen-doping and catalysis, as-prepared nitrogen doped hard car- bon exhibits higher reversible capacity (345 mAh g-1 at 0.1 A g-1 ), higher rate capability (145 mAh g-1 at 5 A g-1) and excellent cycling stability. The superior electrochemical performance is ascribed to the synergistic effect of nitrogen doping, graphitic structure and amorphous structure. Among them, nitro- gen doping could create the vacancies around the nitrogen sites, which enhance the reactivity and the electronic conductivity of materials. Additionally, graphitic structure also enhances the electronic con- ductivity of materials, thus improving the electrochemical performance of hard carbon. It is worthwhile that Iignin, renewable and abundant biopolymer, is converted to hard carbon with good electrochemical performance, which realizes the high value utilization of lignin. 展开更多
关键词 Hard carbon LIGNIN MELAMINE NITROGEN-DOPING catalysis
在线阅读 下载PDF
Recent advancement and future challenges of photothermal catalysis for VOCs elimination:From catalyst design to applications 被引量:8
9
作者 Yang Yang Shenghao Zhao +7 位作者 Lifeng Cui Fukun Bi Yining Zhang Ning Liu Yuxin Wang Fudong Liu Chi He Xiaodong Zhang 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第3期654-672,共19页
Photothermal catalysis realizes the synergistic effect of solar energy and thermochemistry,which also has the potential to improve the reaction rate and optimize the selectivity.In this review,the research progress of... Photothermal catalysis realizes the synergistic effect of solar energy and thermochemistry,which also has the potential to improve the reaction rate and optimize the selectivity.In this review,the research progress of photothermal catalytic removal of volatile organic compounds(VOCs)by nano-catalysts in recent years is systematically reviewed.First,the fundamentals of photothermal catalysis and the fabrication of catalysts are described,and the design strategy of optimizing photothermal catalysis performance is proposed.Second,the performance for VOC degradation with photothermal catalysis is evaluated and compared for the batch and continuous systems.Particularly,the catalytic mechanism of VOC oxidation is systematically introduced based on experimental and theoretical study.Finally,the future limitations and challenges have been discussed,and potential research directions and priorities are highlighted.A broad view of recent photothermal catalyst fabrication,applications,challenges,and prospects can be systemically provided by this review. 展开更多
关键词 Photothermal catalysis VOCS Catalyst design Light-driven thermal catalysis Photothermal synergistic effect
在线阅读 下载PDF
Application of in-plasma catalysis and post-plasma catalysis for methane partial oxidation to methanol over a Fe_2O_3-CuO/γ-Al_2O_3 catalyst 被引量:5
10
作者 Lin Chen Xingwang Zhang +1 位作者 Liang Huang Lecheng Lei 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2010年第6期628-637,共10页
Methane partial oxidation to methanol (MPOM) using dielectric barrier discharge over a Fe2O3-CuO/γ-Al2O3 catalyst was performed.The multicomponent catalyst was combined with plasma in two different configurations,i... Methane partial oxidation to methanol (MPOM) using dielectric barrier discharge over a Fe2O3-CuO/γ-Al2O3 catalyst was performed.The multicomponent catalyst was combined with plasma in two different configurations,i.e.,in-plasma catalysis (IPC) and post-plasma catalysis (PPC).It was found that the catalytic performance of the catalysts for MPOM was strongly dependent on the hybrid configuration.A better synergistic performance of plasma and catalysis was achieved in the IPC configuration,but the catalysts packed in the discharge zone showed lower stability than those connected to the discharge zone in sequence.Active species,such as ozone,atomic oxygen and methyl radicals,were produced from the plasma-catalysis process,and made a major contribution to methanol synthesis.These active species were identified by the means of in situ optical emission spectra,ozone measurement and FT-IR spectra.It was confirmed that the amount of active species in the IPC system was greater than that in the PPC system.The results of TG,XRD,and N2 adsorption-desorption revealed that carbon deposition on the spent catalyst surface was responsible for the catalyst deactivation in the IPC configuration. 展开更多
关键词 methane partial oxidation to methanol plasma catalysis combination synergistic performance catalytic stability
在线阅读 下载PDF
Heterogeneous catalysis under flow for the 21st century fine chemical industry 被引量:5
11
作者 Rosaria Ciriminna Mario Pagliaro Rafael Luque 《Green Energy & Environment》 SCIE CSCD 2021年第2期161-166,共6页
Due to metal leaching and poor catalyst stability, the chemical industry's fine chemical and pharmaceutical sectors have been historically reluctant to use supported transition metal catalysts to manufacture fine ... Due to metal leaching and poor catalyst stability, the chemical industry's fine chemical and pharmaceutical sectors have been historically reluctant to use supported transition metal catalysts to manufacture fine chemicals and active pharmaceutical ingredients. With the advent of new generation supported metal catalysts and flow chemistry, we argue in this study, this situation is poised to quickly change. Alongside heterogenized metal nanoparticles, both single-site molecular and single-atom catalyst will become ubiquitous. This study offers a critical outlook taking into account both technical and economic aspects. 展开更多
关键词 Fine chemical Heterogeneous catalysis Single atom catalysis Green chemistry Chemical industry
在线阅读 下载PDF
Recent progress on synthesis of ZIF-67-based materials and their application to heterogeneous catalysis 被引量:9
12
作者 Chongxiong Duan Yi Yu Han Hu 《Green Energy & Environment》 SCIE EI CSCD 2022年第1期3-15,共13页
In recent years,an increasing amount of interest has been dedicated to the synthesis and application of ZIF-67-based materials due to their exceptionally high surface area,tunable porosity,and excellent thermal and ch... In recent years,an increasing amount of interest has been dedicated to the synthesis and application of ZIF-67-based materials due to their exceptionally high surface area,tunable porosity,and excellent thermal and chemical stabilities.This review summarizes the latest strategies of synthesizing ZIF-67-based materials by exploring the prominent examples.Then,the recent progress in the applications of ZIF-67-based materials in heterogeneous catalysis,including catalysis of the redox reactions,addition reactions,esterification reactions,Knoevenagel condensations,and hydrogenation-dehydrogenation reactions,has been elaborately discussed.Finally,we end this work by shedding some light on the large-scale industrial production of ZIF-67-based materials and their applications in the future. 展开更多
关键词 Zeolitic imidazolate framework-67 Synthetic methods Heterogeneous catalysis
在线阅读 下载PDF
Quantum Dots Compete at the Acme of MXene Family for the Optimal Catalysis 被引量:4
13
作者 Yuhua Liu Wei Zhang Weitao Zheng 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第10期36-82,共47页
It is well known that two-dimensional(2D)MXene-derived quan-tum dots(MQDs)inherit the excellent physicochemical properties of the parental MXenes,as a Chinese proverb says,“Indigo blue is extracted from the indigo pl... It is well known that two-dimensional(2D)MXene-derived quan-tum dots(MQDs)inherit the excellent physicochemical properties of the parental MXenes,as a Chinese proverb says,“Indigo blue is extracted from the indigo plant,but is bluer than the plant it comes from.”Therefore,0D QDs harvest larger surface-to-volume ratio,outstanding optical properties,and vigorous quantum confinement effect.Currently,MQDs trigger enormous research enthusiasm as an emerging star of functional materials applied to physics,chemistry,biology,energy conversion,and storage.Since the surface properties of small-sized MQDs include the type of surface functional groups,the functionalized surface directly determines their performance.As the Nobel Laureate Wolfgang Pauli says,“God made the bulk,but the surface was invented by the devil,”and it is just on the basis of the abundant surface functional groups,there is lots of space to be thereof excavated from MQDs.We are witnessing such excellence and even more promising to be expected.Nowadays,MQDs have been widely applied to catalysis,whereas the related reviews are rarely reported.Herein,we provide a state-of-the-art overview of MQDs in catalysis over the past five years,ranging from the origin and development of MQDs,synthetic routes of MQDs,and functionalized MQDs to advanced characterization techniques.To explore the diversity of catalytic application and perspectives of MQDs,our review will stimulate more efforts toward the synthesis of optimal MQDs and thereof designing high-performance MQDs-based catalysts. 展开更多
关键词 MXene Quantum dots catalysis Surface groups STRUCTURE
在线阅读 下载PDF
Recent progress of carbon-based metal-free materials in thermal-driven catalysis 被引量:3
14
作者 Shuchang Wu Linhui Yu +2 位作者 Guodong Wen Zailai Xie Yangming Lin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第7期318-335,共18页
The carbon-based metal-free materials as catalysts(named as carbocatalysts) have been attracting tremendous attentions in electric-,solar-and thermal-driven reactions nowadays.Compared to electrocatalysis and photocat... The carbon-based metal-free materials as catalysts(named as carbocatalysts) have been attracting tremendous attentions in electric-,solar-and thermal-driven reactions nowadays.Compared to electrocatalysis and photocatalysis,the thermal-driven catalysis(thermocatalysis) including liquid phase and gas phase reactions involves wider scope and is relatively easy to realize practical large-scale applications.Over the past several years,some striking achievements on the design of new carbon-based metal-free materials with well-defined structures and heteroatom groups as well as the revelation of new reaction mechanisms and active sites in thermocatalysis have been obtained.However,comparative discussions regarding these recent achievements have been rarely highlighted.In this review,we systematically summarize and discuss six kinds of carbocatalysts and their applications in thermocatalysis.These materials include typical oxygen-attached carbon,surface modified carbon(graft with certain organic compounds),mono-doped carbon,co-doped carbon,carbon nitride and materials with carbon as dopant.Some new reaction processes as well as the related reaction mechanisms,active sites and intermediates are reviewed critically.Moreover,an outlook on the in-depth investigation of the metalfree carbocatalysis in the future is provided. 展开更多
关键词 Carbocatalysis METAL-FREE Thermal-driven catalysis Active sites
在线阅读 下载PDF
Nonlocal multi-target controlled controlled gate using Greenberger–Horne–Zeilinger channel and qutrit catalysis 被引量:1
15
作者 陈立冰 路洪 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第7期110-113,共4页
We present a scheme for implementing locally a nonlocal N-target controlled–controlled gate with unit probability of success by harnessing two(N+1)-qubit Greenberger–Horne–Zeilinger(GHZ) states as quantum chan... We present a scheme for implementing locally a nonlocal N-target controlled–controlled gate with unit probability of success by harnessing two(N+1)-qubit Greenberger–Horne–Zeilinger(GHZ) states as quantum channel and N qutrits as catalyser. The quantum network that implements this nonlocal(N+2)-body gate is built entirely of local single-body and two-body gates, and has only(3N+2) two-body gates. This result suggests that both the computational depth of quantum network and the quantum resources required to perform this nonlocal gate might be significantly reduced. This scheme can be generalized straightforwardly to implement a nonlocal N-target and M-control qubits gate. 展开更多
关键词 nonlocal N-target controlled–controlled gate GHZ state qutrit catalysis
在线阅读 下载PDF
CoB and BN composites enabling integrated adsorption/catalysis to polysulfides for inhibiting shuttle-effect in Li-S batteries 被引量:3
16
作者 Tianli Wu Ting Yang +4 位作者 Jizong Zhang Xuewen Zheng Kunlin Liu Chengyang Wang Mingming Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第8期220-228,I0005,共10页
Lithium-sulfur(Li-S)batteries are hampered by the infamous shuttle effect and slow redox kinetics,resulting in rapid capacity decay.Herein,a bifunctional catalysis CoB/BN@rGO with integrated structure and synergy effe... Lithium-sulfur(Li-S)batteries are hampered by the infamous shuttle effect and slow redox kinetics,resulting in rapid capacity decay.Herein,a bifunctional catalysis CoB/BN@rGO with integrated structure and synergy effect between adsorption and catalysis is proposed to solve the above problems.The integrated CoB and BN are simultaneously and uniformly introduced on the rGO substrate through a one-step calcination strategy,applied to modify the cathode side of PP separator.The transition metal borides can catalyze the conversion of lithium polysulfides(Li_(2)Sn,n≥4),whereas the bond of B-S is too weak to absorb LPS.Thus BN introduced can effectively restrict the diffusion of polysulfides via strong chemisorption with LiSnLi+…N,while the rGO substrate ensures smooth electron transfer for redox reaction.Therefore,through the integrated adsorption/catalysis,the shuttle effect is suppressed,the kinetics of redox reaction is enhanced,and the capacity decay is reduced.Using CoB/BN@rGO modified PP separator,the Li-S batteries with high initial capacity(1450 mAh g^(-1)at 0.35 mA cm^(-2))and long-cycle stability(700 cycles at 1.74 mA cm^(-2)with a decay rate of 0.032%per cycle)are achieved.This work provides a novel insight for the preparation of bifunctional catalysis with integrated structure for long-life Li-S batteries. 展开更多
关键词 Integrated structure Synergy effect Bifunctional catalysis SEPARATOR Li-S batteries
在线阅读 下载PDF
Effect of BaNH,CaNH,Mg3N2 on the activity of Co in NH3 decomposition catalysis 被引量:4
17
作者 Pei Yu Han Wu +6 位作者 Jianping Guo Peikun Wang Fei Chang Wenbo Gao Weijin Zhang Lin Liu Ping Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第7期16-21,I0002,共7页
Development of active and non-noble metal-based catalyst for H2 production via NH3 decomposition is crucial for the implementation of NH3 as a H2 carrier.Co-based catalysts have received increasing attention because o... Development of active and non-noble metal-based catalyst for H2 production via NH3 decomposition is crucial for the implementation of NH3 as a H2 carrier.Co-based catalysts have received increasing attention because of its high intrinsic activity and moderate cost.In this work,we examined the effect of BaNH,CaNH and Mg3 N2 on the catalytic activity of Co in the NH3 decomposition reaction.The H2 formation rate ranks the order as Co-BaNH>Co-CaNH>Co-Mg3 N2≈Co/CNTs within a reaction temperature range of 300-550℃.It is worth pointing out that the H2 formation rate of Co-BaNH at 500℃reaches20 mmolH2 gcat-1 min-1,which is comparable to those of the active Ru/Al2 O3(ca.17 mmolH2 gcat-1 min1)and Ru/AC(21 mmolH2 gcat-1 min-1)catalysts under the similar reaction conditions.In-depth research shows that Co-BaNH exhibits an obviously higher intrinsic activity and much lower Ea(46.2 kJ mol-1)than other Co-based catalysts,suggesting that BaNH may play a different role from CaNH,Mg3 N2 and CNTs during the catalytic process.Combined results of XRD,Ar-TPD and XAS show that a[Co-N-Ba]-like intermediate species is likely formed at the interface of Co metal and BaNH,which may lead to a more energy-efficient reaction pathway than that of neat Co metal for NH3 decomposition. 展开更多
关键词 Alkaline earth metal imide COBALT NH3 decomposition Heterogeneous catalysis
在线阅读 下载PDF
Design of ZnSe-CoSe heterostructure decorated in hollow N-doped carbon nanocage with generous adsorption and catalysis sites for the reversibly fast kinetics of polysulfide conversion 被引量:2
18
作者 Junan Feng Chuan Shi +7 位作者 Hanghang Dong Chaoyue Zhang Wendong Liu Yu Liu Tianyi Wang Xiaoxian Zhao Shuangqiang Chen Jianjun Song 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第11期135-145,I0004,共12页
Although lithium-sulfur batteries(Li SBs)are regarded as one of the most promising candidates for the next-generation energy storage system,the actual industrial application is hindered by the sluggish solid–liquid p... Although lithium-sulfur batteries(Li SBs)are regarded as one of the most promising candidates for the next-generation energy storage system,the actual industrial application is hindered by the sluggish solid–liquid phase conversion kinetics,severe shuttle effect,and low sulfur loadings.Herein,a zeolitic imidazolate framework(ZIF)derived heterogeneous ZnSe-CoSe nanoparticles encapsulated in hollow N-doped carbon nanocage(ZnSe-CoSe-HNC)was designed by etching with tannic acid as a multifunctional electrocatalyst to boost the polysulfide conversion kinetics in LiSBs.The hollow structure in ZIF ensures large inner voids for sulfur and buffering volume expansions.Abundant exposed ZnSe-CoSe heterogeneous interfaces serve as bifunctional adsorption-catalytic centers to accelerate the conversion kinetics and alleviate the shuttle effect.Together with the highly conductive framework,the ZnSe-CoSeHNC/S cathode exhibits a high initial reversible capacity of 1305.3 m A h g-1at 0.2 C,high-rate capability,and reliable cycling stability under high sulfur loading and lean electrolyte(maintaining at 745 m A h g-1after 200 cycles with a high sulfur loading of 6.4 mg cm-2and a low electrolyte/sulfur ratio of 6μL mg^(-1)).Theoretical calculations have demonstrated the heterostructures of ZnSe-CoSe offer higher binding energy to lithium polysulfides than that of ZnSe or CoSe,facilitating the electron transfer to lithium polysulfides.This work provides a novel heterostructure with superior catalytic ability and hollow conductive architecture,paving the way for the practical application of functional sulfur electrodes. 展开更多
关键词 Lithium-sulfur batteries HETEROSTRUCTURE Conversion Kinetics Hollow structure Bi-directional catalysis
在线阅读 下载PDF
Designing high-efficiency light-to-thermal conversion materials for solar desalination and photothermal catalysis 被引量:3
19
作者 Hanjin Jiang Xinghang Liu +5 位作者 Dewen Wang Zhenan Qiao Dong Wang Fei Huang Hongyan Peng Chaoquan Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期581-600,共20页
Light-to-thermal conversion materials(LTCMs)have been of great interest to researchers due to their impressive energy conversion capacity and wide range of applications in biomedical,desalination,and synergistic catal... Light-to-thermal conversion materials(LTCMs)have been of great interest to researchers due to their impressive energy conversion capacity and wide range of applications in biomedical,desalination,and synergistic catalysis.Given the limited advances in existing materials(metals,semiconductors,π-conjugates),researchers generally adopt the method of constructing complex systems and hybrid structures to optimize performance and achieve multifunctional integration.However,the development of LTCMs is still in its infancy as the physical mechanism of light-to-thermal conversion is unclear.In this review,we proposed design strategies for efficient LTCMs by analyzing the physical process of light-tothermal conversion.First,we analyze the nature of light absorption and heat generation to reveal the physical processes of light-to-thermal conversion.Then,we explain the light-to-thermal conversion mechanisms of metallic,semiconducting andπ-conjugated LCTMs,and propose new material design strategies and performance improvement methods.Finally,we summarize the challenges and prospects of LTCMs in emerging applications such as solar water evaporation and photothermal catalysis. 展开更多
关键词 Light-to-thermal conversion Solar energy conversion Material design Performance improvement Solar water evaporation Photothermal catalysis
在线阅读 下载PDF
Emerging material engineering strategies for amplifying photothermal heterogeneous CO_(2)catalysis 被引量:3
20
作者 Bingqiao Xie Emma Lovell +4 位作者 Tze Hao Tan Salina Jantarang Mengying Yu Jason Scott Rose Amal 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第8期108-125,I0004,共19页
Closing the carbon loop,through CO_(2)capture and utilization,is a promising route to mitigate climate change.Solar energy is a sustainable energy source which can be exploited to drive catalytic reactions for utilizi... Closing the carbon loop,through CO_(2)capture and utilization,is a promising route to mitigate climate change.Solar energy is a sustainable energy source which can be exploited to drive catalytic reactions for utilizing CO_(2),including converting the CO_(2)into useful products.Solar energy can be harnessed through a range of different pathways to valorize CO_(2).Whilst using solar energy to drive CO_(2)reduction has vast potential to promote catalytic CO_(2)conversions,the progress is limited due to the lack of understanding of property-performance relations as well as feasible material engineering approaches.Herein,we outline the various driving forces involved in photothermal CO_(2)catalysis.The heat from solar energy can be utilized to induce CO_(2)catalytic reduction reactions via the photothermal effect.Further,solar energy can act to modify reaction pathways through light-matter interactions.Light-induced chemical functions have demonstrated the ability to regulate intermediary reaction steps,and thus control the reaction selectivity.Photothermal catalyst structures and specific catalyst design strategies are discussed in this context.This review provides a comprehensive understanding of the heat-light synergy and guidance for rational photothermal catalyst design for CO_(2)utilization. 展开更多
关键词 CO_(2)reduction Photothermal catalysis Material engineering strategies Plasmonic photocatalysis
在线阅读 下载PDF
上一页 1 2 185 下一页 到第
使用帮助 返回顶部