Urban combat environments pose complex and variable challenges for UAV path planning due to multidimensional factors,such as static and dynamic obstructions as well as risks of exposure to enemy detection,which threat...Urban combat environments pose complex and variable challenges for UAV path planning due to multidimensional factors,such as static and dynamic obstructions as well as risks of exposure to enemy detection,which threaten flight safety and mission success.Traditional path planning methods typically depend solely on the distribution of static obstacles to generate collision-free paths,without accounting for constraints imposed by enemy detection and strike capabilities.Such a simplified approach can yield safety-compromising routes in highly complex urban airspace.To address these limitations,this study proposes a multi-parameter path planning method based on reachable airspace visibility graphs,which integrates UAV performance constraints,environmental limitations,and exposure risks.An innovative heuristic algorithm is developed to balance operational safety and efficiency by both exposure risks and path length.In the case study set in a typical mixed-use urban area,analysis of airspace visibility graphs reveals significant variations in exposure risk at different regions and altitudes due to building encroachments.Path optimization results indicate that the method can effectively generate covert and efficient flight paths by dynamically adjusting the exposure index,which represents the likelihood of enemy detection,and the path length,which corresponds to mission execution time.展开更多
The detection and recognition of radar signals play a critical role in the maintenance of future electronic warfare(EW).So far,however,there are still problems with signal detection and recognition,especially in the l...The detection and recognition of radar signals play a critical role in the maintenance of future electronic warfare(EW).So far,however,there are still problems with signal detection and recognition,especially in the low probability of intercept(LPI)radar.This paper explores the usefulness of such an algorithm in the scenario of LPI radar signal detection and recognition based on visibility graphs(VG).More network and feature information can be extracted in the VG two-dimensional space,this algorithm can solve the problem of signal recognition using the autocorrelation function.Wavelet denoising processing is introduced into the signal to be tested,and the denoised signal is converted to the VG domain.Then,the signal detection is performed by using the constant false alarm of the VG average degree.Next,weight the converted graph.Finally,perform feature extraction on the weighted image,and use the feature to complete the recognition.It is testified that the proposed algorithm offers significant improvements,such as robustness to noise,and the detection and recognition accuracy,over the recent researches.展开更多
To address the problem of the weak anti-noise and macro-trend extraction abilities of the current methods for identifying radar antenna scan type,a recognition method for radar antenna scan types based on limited pene...To address the problem of the weak anti-noise and macro-trend extraction abilities of the current methods for identifying radar antenna scan type,a recognition method for radar antenna scan types based on limited penetrable visibility graph(LPVG)is proposed.Firstly,seven types of radar antenna scans are analyzed,which include the circular scan,sector scan,helical scan,raster scan,conical scan,electromechanical hybrid scan and two-dimensional electronic scan.Then,the time series of the pulse amplitude in the radar reconnaissance receiver is converted into an LPVG network,and the feature parameters are extracted.Finally,the recognition result is obtained by using a support vector machine(SVM)classifier.The experimental results show that the recognition accuracy and noise resistance of this new method are improved,where the average recognition accuracy for radar antenna type is at least 90%when the signalto-noise ratio(SNR)is 5 dB and above.展开更多
Modern radar signals mostly use low probability of intercept(LPI)waveforms,which have short pulses in the time domain,multicomponent properties,frequency hopping,combined modulation waveforms and other characteristics...Modern radar signals mostly use low probability of intercept(LPI)waveforms,which have short pulses in the time domain,multicomponent properties,frequency hopping,combined modulation waveforms and other characteristics,making the detection and estimation of LPI radar signals extremely difficult,and leading to highly required significant research on perception technology in the battlefield environment.This paper proposes a visibility graphs(VG)-based multicomponent signals detection method and a modulation waveforms parameter estimation algorithm based on the time-frequency representation(TFR).On the one hand,the frequency domain VG is used to set the dynamic threshold for detecting the multicomponent LPI radar waveforms.On the other hand,the signal is projected into the time and frequency domains by the TFR method for estimating its symbol width and instantaneous frequency(IF).Simulation performance shows that,compared with the most advanced methods,the algorithm proposed in this paper has a valuable advantage.Meanwhile,the calculation cost of the algorithm is quite low,and it is achievable in the future battlefield.展开更多
基金supported by the Ministry of Industry and Information Technology(No.23100002022102001)。
文摘Urban combat environments pose complex and variable challenges for UAV path planning due to multidimensional factors,such as static and dynamic obstructions as well as risks of exposure to enemy detection,which threaten flight safety and mission success.Traditional path planning methods typically depend solely on the distribution of static obstacles to generate collision-free paths,without accounting for constraints imposed by enemy detection and strike capabilities.Such a simplified approach can yield safety-compromising routes in highly complex urban airspace.To address these limitations,this study proposes a multi-parameter path planning method based on reachable airspace visibility graphs,which integrates UAV performance constraints,environmental limitations,and exposure risks.An innovative heuristic algorithm is developed to balance operational safety and efficiency by both exposure risks and path length.In the case study set in a typical mixed-use urban area,analysis of airspace visibility graphs reveals significant variations in exposure risk at different regions and altitudes due to building encroachments.Path optimization results indicate that the method can effectively generate covert and efficient flight paths by dynamically adjusting the exposure index,which represents the likelihood of enemy detection,and the path length,which corresponds to mission execution time.
基金This work was supported by the National Defence Pre-research Foundation of China(30502010103).
文摘The detection and recognition of radar signals play a critical role in the maintenance of future electronic warfare(EW).So far,however,there are still problems with signal detection and recognition,especially in the low probability of intercept(LPI)radar.This paper explores the usefulness of such an algorithm in the scenario of LPI radar signal detection and recognition based on visibility graphs(VG).More network and feature information can be extracted in the VG two-dimensional space,this algorithm can solve the problem of signal recognition using the autocorrelation function.Wavelet denoising processing is introduced into the signal to be tested,and the denoised signal is converted to the VG domain.Then,the signal detection is performed by using the constant false alarm of the VG average degree.Next,weight the converted graph.Finally,perform feature extraction on the weighted image,and use the feature to complete the recognition.It is testified that the proposed algorithm offers significant improvements,such as robustness to noise,and the detection and recognition accuracy,over the recent researches.
基金supported by the China Postdoctoral Science Foundation(2015M572694,2016T90979).
文摘To address the problem of the weak anti-noise and macro-trend extraction abilities of the current methods for identifying radar antenna scan type,a recognition method for radar antenna scan types based on limited penetrable visibility graph(LPVG)is proposed.Firstly,seven types of radar antenna scans are analyzed,which include the circular scan,sector scan,helical scan,raster scan,conical scan,electromechanical hybrid scan and two-dimensional electronic scan.Then,the time series of the pulse amplitude in the radar reconnaissance receiver is converted into an LPVG network,and the feature parameters are extracted.Finally,the recognition result is obtained by using a support vector machine(SVM)classifier.The experimental results show that the recognition accuracy and noise resistance of this new method are improved,where the average recognition accuracy for radar antenna type is at least 90%when the signalto-noise ratio(SNR)is 5 dB and above.
基金supported by the National Defence Pre-research Foundation of China(30502010103).
文摘Modern radar signals mostly use low probability of intercept(LPI)waveforms,which have short pulses in the time domain,multicomponent properties,frequency hopping,combined modulation waveforms and other characteristics,making the detection and estimation of LPI radar signals extremely difficult,and leading to highly required significant research on perception technology in the battlefield environment.This paper proposes a visibility graphs(VG)-based multicomponent signals detection method and a modulation waveforms parameter estimation algorithm based on the time-frequency representation(TFR).On the one hand,the frequency domain VG is used to set the dynamic threshold for detecting the multicomponent LPI radar waveforms.On the other hand,the signal is projected into the time and frequency domains by the TFR method for estimating its symbol width and instantaneous frequency(IF).Simulation performance shows that,compared with the most advanced methods,the algorithm proposed in this paper has a valuable advantage.Meanwhile,the calculation cost of the algorithm is quite low,and it is achievable in the future battlefield.