To enhance the video quality after encoding and decoding in video compression,a video quality enhancement framework is pro-posed based on local and non-local priors in this paper.Low-level features are first extracted...To enhance the video quality after encoding and decoding in video compression,a video quality enhancement framework is pro-posed based on local and non-local priors in this paper.Low-level features are first extracted through a single convolution layer and then pro-cessed by several conv-tran blocks(CTB)to extract high-level features,which are ultimately transformed into a residual image.The final re-constructed video frame is obtained by performing an element-wise addition of the residual image and the original lossy video frame.Experi-ments show that the proposed Conv-Tran Network(CTN)model effectively recovers the quality loss caused by Versatile Video Coding(VVC)and further improves VVC's performance.展开更多
To improve the performance of video compression for machine vision analysis tasks,a video coding for machines(VCM)standard working group was established to promote standardization procedures.In this paper,recent advan...To improve the performance of video compression for machine vision analysis tasks,a video coding for machines(VCM)standard working group was established to promote standardization procedures.In this paper,recent advances in video coding for machine standards are presented and comprehensive introductions to the use cases,requirements,evaluation frameworks and corresponding metrics of the VCM standard are given.Then the existing methods are presented,introducing the existing proposals by category and the research progress of the latest VCM conference.Finally,we give conclusions.展开更多
A layered compression algorithm is presented which delivers spatial scalable encoded bit streams for remote video monitoring system. The complexity of the algorithm is modest and is well suited to real time implementa...A layered compression algorithm is presented which delivers spatial scalable encoded bit streams for remote video monitoring system. The complexity of the algorithm is modest and is well suited to real time implementation. Based on the layered compression algorithm, a codec system model is established. High-speed video compression can be realized with parallel data compression in this codec system. For image reconstruction, a prediction method using two nearest pix points is presented.展开更多
High Efficiency Video Coding (HEVC) is the latest international video coding standard, which can provide the similar quality with about half bandwidth compared with its predecessor, H.264/MPEG?4 AVC. To meet the requi...High Efficiency Video Coding (HEVC) is the latest international video coding standard, which can provide the similar quality with about half bandwidth compared with its predecessor, H.264/MPEG?4 AVC. To meet the requirement of higher bit depth coding and more chroma sampling formats, range extensions of HEVC were developed. This paper introduces the coding tools in HEVC range extensions and provides experimental results to compare HEVC range extensions with previous video coding standards. Ex?perimental results show that HEVC range extensions improve coding efficiency much over H.264/MPEG?4 AVC High Predictive profile, especially for 4K sequences.展开更多
Multimedia semantic communication has been receiving increasing attention due to its significant enhancement of communication efficiency.Semantic coding,which is oriented towards extracting and encoding the key semant...Multimedia semantic communication has been receiving increasing attention due to its significant enhancement of communication efficiency.Semantic coding,which is oriented towards extracting and encoding the key semantics of video for transmission,is a key aspect in the framework of multimedia semantic communication.In this paper,we propose a facial video semantic coding method with low bitrate based on the temporal continuity of video semantics.At the sender’s end,we selectively transmit facial keypoints and deformation information,allocating distinct bitrates to different keypoints across frames.Compressive techniques involving sampling and quantization are employed to reduce the bitrate while retaining facial key semantic information.At the receiver’s end,a GAN-based generative network is utilized for reconstruction,effectively mitigating block artifacts and buffering problems present in traditional codec algorithms under low bitrates.The performance of the proposed approach is validated on multiple datasets,such as VoxCeleb and TalkingHead-1kH,employing metrics such as LPIPS,DISTS,and AKD for assessment.Experimental results demonstrate significant advantages over traditional codec methods,achieving up to approximately 10-fold bitrate reduction in prolonged,stable head pose scenarios across diverse conversational video settings.展开更多
探讨视频压缩编码技术在高分辨率视频传输中的应用,详细分析视频传输带宽的优化、高效视频编码(High Efficiency Video Coding,HEVC)和多功能视频编码(Versatile Video Coding,VVC)等编码标准的实现,以及低延迟实时传输的技术保障。利用...探讨视频压缩编码技术在高分辨率视频传输中的应用,详细分析视频传输带宽的优化、高效视频编码(High Efficiency Video Coding,HEVC)和多功能视频编码(Versatile Video Coding,VVC)等编码标准的实现,以及低延迟实时传输的技术保障。利用Netflix的4K流媒体传输案例展示视频压缩编码技术在不同网络环境下对比特率、视频质量和延迟优化的成效。展开更多
为了面向低延时的浅压缩场景提供更加适配的编码方案,并降低硬件实现成本,提出一种基于数字音视频编解码技术标准(Audio Video coding Standard,AVS)浅压缩算法的帧内预测模式优化以及快速率失真优化算法。该算法通过减少原有算法帧内...为了面向低延时的浅压缩场景提供更加适配的编码方案,并降低硬件实现成本,提出一种基于数字音视频编解码技术标准(Audio Video coding Standard,AVS)浅压缩算法的帧内预测模式优化以及快速率失真优化算法。该算法通过减少原有算法帧内预测所需的预测循环次数,以及打破各块之间的数据依赖关系等措施,克服了原始方案不适合硬件流水并行处理的限制,提高了编码的效率和稳定性,从而既保障了算法的视频质量,又使新的硬件实现方案更符合实际应用需求。实验结果表明,该算法优化方案能够有效改善实际面向低延时浅压缩场景下的编码效果。展开更多
在2003年制定的H.264/AVC视频编码标准获得巨大的成功后,新一代视频编码国际标准HEVC(High Ef-ficiency Video Coding)在ITU-T的VCEG和ISO/IEC的MPEG通力合作下已经开发成功。HEVC提供了多项先进的视频编码技术。尽管HEVC的视频编码层...在2003年制定的H.264/AVC视频编码标准获得巨大的成功后,新一代视频编码国际标准HEVC(High Ef-ficiency Video Coding)在ITU-T的VCEG和ISO/IEC的MPEG通力合作下已经开发成功。HEVC提供了多项先进的视频编码技术。尽管HEVC的视频编码层结构仍然是常见的基于块运动补偿的混合视频编码模式,但是和先前的标准相比具有多处重要改进。文中对HEVC标准的技术的主要特点和性能进行了综述。展开更多
基金supported by the Key R&D Program of China under Grant No. 2022YFC3301800Sichuan Local Technological Development Program under Grant No. 24YRGZN0010ZTE Industry-University-Institute Cooperation Funds under Grant No. HC-CN-03-2019-12
文摘To enhance the video quality after encoding and decoding in video compression,a video quality enhancement framework is pro-posed based on local and non-local priors in this paper.Low-level features are first extracted through a single convolution layer and then pro-cessed by several conv-tran blocks(CTB)to extract high-level features,which are ultimately transformed into a residual image.The final re-constructed video frame is obtained by performing an element-wise addition of the residual image and the original lossy video frame.Experi-ments show that the proposed Conv-Tran Network(CTN)model effectively recovers the quality loss caused by Versatile Video Coding(VVC)and further improves VVC's performance.
基金supported by ZTE Industry-University-Institute Cooperation Funds.
文摘To improve the performance of video compression for machine vision analysis tasks,a video coding for machines(VCM)standard working group was established to promote standardization procedures.In this paper,recent advances in video coding for machine standards are presented and comprehensive introductions to the use cases,requirements,evaluation frameworks and corresponding metrics of the VCM standard are given.Then the existing methods are presented,introducing the existing proposals by category and the research progress of the latest VCM conference.Finally,we give conclusions.
文摘A layered compression algorithm is presented which delivers spatial scalable encoded bit streams for remote video monitoring system. The complexity of the algorithm is modest and is well suited to real time implementation. Based on the layered compression algorithm, a codec system model is established. High-speed video compression can be realized with parallel data compression in this codec system. For image reconstruction, a prediction method using two nearest pix points is presented.
文摘High Efficiency Video Coding (HEVC) is the latest international video coding standard, which can provide the similar quality with about half bandwidth compared with its predecessor, H.264/MPEG?4 AVC. To meet the requirement of higher bit depth coding and more chroma sampling formats, range extensions of HEVC were developed. This paper introduces the coding tools in HEVC range extensions and provides experimental results to compare HEVC range extensions with previous video coding standards. Ex?perimental results show that HEVC range extensions improve coding efficiency much over H.264/MPEG?4 AVC High Predictive profile, especially for 4K sequences.
基金supported by the National Natural Science Foundation of China(Nos.NSFC 61925105,62322109,62171257 and U22B2001)the Xplorer Prize in Information and Electronics technologies,and the Tsinghua University(Department of Electronic Engineering)-Nantong Research Institute for Advanced Communication Technologies Joint Research Center for Space,Air,Ground and Sea Cooperative Communication Network Technology.
文摘Multimedia semantic communication has been receiving increasing attention due to its significant enhancement of communication efficiency.Semantic coding,which is oriented towards extracting and encoding the key semantics of video for transmission,is a key aspect in the framework of multimedia semantic communication.In this paper,we propose a facial video semantic coding method with low bitrate based on the temporal continuity of video semantics.At the sender’s end,we selectively transmit facial keypoints and deformation information,allocating distinct bitrates to different keypoints across frames.Compressive techniques involving sampling and quantization are employed to reduce the bitrate while retaining facial key semantic information.At the receiver’s end,a GAN-based generative network is utilized for reconstruction,effectively mitigating block artifacts and buffering problems present in traditional codec algorithms under low bitrates.The performance of the proposed approach is validated on multiple datasets,such as VoxCeleb and TalkingHead-1kH,employing metrics such as LPIPS,DISTS,and AKD for assessment.Experimental results demonstrate significant advantages over traditional codec methods,achieving up to approximately 10-fold bitrate reduction in prolonged,stable head pose scenarios across diverse conversational video settings.
文摘探讨视频压缩编码技术在高分辨率视频传输中的应用,详细分析视频传输带宽的优化、高效视频编码(High Efficiency Video Coding,HEVC)和多功能视频编码(Versatile Video Coding,VVC)等编码标准的实现,以及低延迟实时传输的技术保障。利用Netflix的4K流媒体传输案例展示视频压缩编码技术在不同网络环境下对比特率、视频质量和延迟优化的成效。
文摘为了面向低延时的浅压缩场景提供更加适配的编码方案,并降低硬件实现成本,提出一种基于数字音视频编解码技术标准(Audio Video coding Standard,AVS)浅压缩算法的帧内预测模式优化以及快速率失真优化算法。该算法通过减少原有算法帧内预测所需的预测循环次数,以及打破各块之间的数据依赖关系等措施,克服了原始方案不适合硬件流水并行处理的限制,提高了编码的效率和稳定性,从而既保障了算法的视频质量,又使新的硬件实现方案更符合实际应用需求。实验结果表明,该算法优化方案能够有效改善实际面向低延时浅压缩场景下的编码效果。
文摘在2003年制定的H.264/AVC视频编码标准获得巨大的成功后,新一代视频编码国际标准HEVC(High Ef-ficiency Video Coding)在ITU-T的VCEG和ISO/IEC的MPEG通力合作下已经开发成功。HEVC提供了多项先进的视频编码技术。尽管HEVC的视频编码层结构仍然是常见的基于块运动补偿的混合视频编码模式,但是和先前的标准相比具有多处重要改进。文中对HEVC标准的技术的主要特点和性能进行了综述。