期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Response of train-bridge system under intensive seismic excitation by random vibration method 被引量:4
1
作者 WU Zhao-zhi ZHANG Nan 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第8期2467-2484,共18页
Earthquake is a kind of sudden and destructive random excitation in nature.It is significant to determine the probability distribution characteristics of the corresponding dynamic indicators to ensure the safety and t... Earthquake is a kind of sudden and destructive random excitation in nature.It is significant to determine the probability distribution characteristics of the corresponding dynamic indicators to ensure the safety and the stability of structures when the intensive seismic excitation,the intensity of which is larger than 7,acts in train-bridge system.Firstly,the motion equations of a two-dimensional train-bridge system under the vertical random excitation of track irregularity and the vertical seismic acceleration are established,where the train subsystem is composed of 8 mutually independent vehicle elements with 48 degrees of freedom,while the single-span simple supported bridge subsystem is composed of 102D beam elements with 20 degrees of freedom on beam and 2 large mass degrees of freedom at the support.Secondly,Monte Carlo method and pseudo excitation method are adopted to analyze the statistical parameters of the system.The power spectrum density of random excitation is used to define a series of non-stationary pseudo excitation in pseudo excitation method and the trigonometric series of random vibration history samples in Monte Carlo method,respectively solved by precise integral method and Newmark-βmethod through the inter-system iterative procedure.Finally,the results are compared with the case under the weak seismic excitation,and show that the samples of vertical acceleration response of bridge and the offload factor of train obeys the normal distribution.In a high probability,the intensive earthquakes pose a greater threat to the safety and stability of bridges and trains than the weak ones. 展开更多
关键词 random vibration method intensive seismic excitation train-bridge system probability distribution inter system iteration precise integral method
在线阅读 下载PDF
Modeling of fluid-induced vibrations and identification of hydrodynamic forces on flow control valves 被引量:3
2
作者 Samad Mehrzad Ilgar Javanshir +1 位作者 Ahmad Rahbar Ranji Seyyed Hadi Taheri 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第7期2596-2603,共8页
Dynamics and vibration of control valves under flow-induced vibration are analyzed. Hydrodynamic load characteristics and structural response under flow-induced vibration are mainly influenced by inertia, damping, ela... Dynamics and vibration of control valves under flow-induced vibration are analyzed. Hydrodynamic load characteristics and structural response under flow-induced vibration are mainly influenced by inertia, damping, elastic, geometric characteristics and hydraulic parameters. The purpose of this work is to investigate the dynamic behavior of control valves in the response to self-excited fluid flow. An analytical and numerical method is developed to simulate the dynamic and vibrational behavior of sliding dam valves, in response to flow excitation. In order to demonstrate the effectiveness of proposed model, the simulation results are validated with experimental ones. Finally, to achieve the optimal valve geometry, numerical results for various shapes of valves are compared. Rounded valve with the least amount of flow turbulence obtains lower fluctuations and vibration amplitude compared with the flat and steep valves. Simulation results demonstrate that with the optimal design requirements of valves, vibration amplitude can be reduced by an average to 30%. 展开更多
关键词 flow-induced force hydrodynamic force finite element method(FEM) valve design fluid-structure interaction vibration
在线阅读 下载PDF
Static-deformation based fault diagnosis for damping spring of large vibrating screen 被引量:7
3
作者 彭利平 刘初升 +1 位作者 李珺 王宏 《Journal of Central South University》 SCIE EI CAS 2014年第4期1313-1321,共9页
Based on the statics theory, a novel and feasible twice-suspended-mass method(TSMM) was proposed to deal with the seldom-studied issue of fault diagnosis for damping springs of large vibrating screen(LVS). With the st... Based on the statics theory, a novel and feasible twice-suspended-mass method(TSMM) was proposed to deal with the seldom-studied issue of fault diagnosis for damping springs of large vibrating screen(LVS). With the static balance characteristic of the screen body/surface as well as the deformation compatibility relation of springs considered, static model of the screen surface under a certain load was established to calculate compression deformation of each spring. Accuracy of the model was validated by both an experiment based on the suspended mass method and the properties of the 3D deformation space in a numerical simulation. Furthermore, by adopting the Taylor formula and the control variate method, quantitative relationship between the change of damping spring deformation and the change of spring stiffness, defined as the deformation sensitive coefficient(DSC), was derived mathematically, from which principle of the TSMM for spring fault diagnosis is clarified. In the end, an experiment was carried out and results show that the TSMM is applicable for diagnosing the fault of single spring in a LVS. 展开更多
关键词 static deformation suspended mass method large vibrating screen damping spring fault diagnosis
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部