Elastic wave on seafloor caused by low frequency noise radiated from ship is called ship seismic wave which can be used to identify ship target. In order to analyze the wave components and the propagating properties o...Elastic wave on seafloor caused by low frequency noise radiated from ship is called ship seismic wave which can be used to identify ship target. In order to analyze the wave components and the propagating properties of ship seismic wave, the numerical calculation of synthetic seismograms on seafloor aroused by a low frequency point sound source is carried out using a wave number integration technique combined with inverse Fourier transform. According to the numerical example of hard seafloor, the time series of seismic wave on seafloor are mostly composed of interface waves and normal mode waves. Each normal mode wave has a well defined low cut-off frequency, while the interface wave doesn't have. The frequency dispersion of normal mode wave is obvious when frequency is lower than 100Hz, while the interface wave is dispersive only in the infra-sound frequency range. The time series of seismic wave is dominated by the interface wave when the source frequency is less than the minimal cut-off frequency of normal mode wave.展开更多
The pressure and horizontal particle velocity combined descriptions in the very low frequency acoustic field of shallow wa- ter integrated with the concept of effective depth of Pekeris wave- guide is proposed, especi...The pressure and horizontal particle velocity combined descriptions in the very low frequency acoustic field of shallow wa- ter integrated with the concept of effective depth of Pekeris wave- guide is proposed, especially the active component of the pressure and horizontal particle velocity cross-spectrum, also called ho- rizontal complex cross acoustic intensity, when only two normal modes are trapped in the waveguide. Both the approximate theo- retic analysis and the numerical results show that the sign of the horizontal complex cross acoustic intensity active component is independent of the range when vertically deployed receiving dual sensors are placed in appropriate depths, the sum of which is equal to the waveguide effective depth, so it can be used to tell whether the sound source is near the surface or underwater; while the range rate is expected to be measured by utilizing the sign distribution characteristic of the reactive component. The further robustness analysis of the depth classification algorithm shows that the existence of shear waves in semi infinite basement and the change of acoustic velocity profiles have few effects on the application of this method, and the seabed attenuation will limit the detection range, but the algorithm still has a good robustness in the valid detection range.展开更多
In order to solve the problem of carrier frequency blind estimation of PSK signals in electronic reconnaissance, a new estimation method was proposed. The phase shift keying(PSK) signal was divided into several over...In order to solve the problem of carrier frequency blind estimation of PSK signals in electronic reconnaissance, a new estimation method was proposed. The phase shift keying(PSK) signal was divided into several overlapping intervals which had equal length, and the spectrum concentration measures of every interval were extracted by the FFT. And then, using the grid-density clustering, the spectrum concentration measures were classified into two categories, the narrowband spectrum interval and the wideband spectrum interval. The narrowband spectrum interval was regarded as the characteristic class. The spectrums of the characteristic class were accumulated to estimate the carrier frequency of PSK signal. The proposed method had avoided the non linear operation in the traditional PSK signal carrier frequency estimation algorithm. Thus, the signal to noise ratio (SNR) threshold was remarkably decreased. Moreover, the proposed method did not need the prior knowledge of the signal, which was suitable to the electronic reconnaissance occasion. Experimental results had verified the validity of the proposed estimation method in low SNR.展开更多
Both the real part and imaginary part of complex permittivity approximately have a log-linear frequency dependency at low fre- quencies, especially at ultra-low frequencies under conditions of different moisture conce...Both the real part and imaginary part of complex permittivity approximately have a log-linear frequency dependency at low fre- quencies, especially at ultra-low frequencies under conditions of different moisture concentrations and temperatures, which is recognized as the low frequency dispersion (LFD). In order to explain this dispersion, a new mechanism of dielectric response of LFD of oil-paper insula- tion is proposed. A simplified one-dimensional mathematical model of concentration polarization carrier caused by slow migration is developed and solved, which indicates that ion mobility is closely related to the size of gap and the adsorption capacity of cellulose molecu- lar chains to ions. A stochastic statistical model of the carrier mobility induced LFD is also developed. Moreover, actual tests under 50 °C and 2% moisture content were put forward, as well as simulations with according current waveforms. The simulation results agreed well with the experimental data in that concentration polarization of carriers caused by slow migration is the probable cause of low frequency dispersion of dielectric response for oil-paper insulation diagnosis.展开更多
Not confined to a certain point,such as waveform,this paper systematically studies the low-intercept radio frequency(RF)stealth design of synthetic aperture radar(SAR)from the system level.The study is carried out fro...Not confined to a certain point,such as waveform,this paper systematically studies the low-intercept radio frequency(RF)stealth design of synthetic aperture radar(SAR)from the system level.The study is carried out from two levels.In the first level,the maximum low-intercept range equation of the conventional SAR system is deduced firstly,and then the maximum low-intercept range equation of the multiple-input multiple-output SAR system is deduced.In the second level,the waveform design and imaging method of the low-intercept RF SAR system are given and verified by simulation.Finally,the main technical characteristics of the lowintercept RF stealth SAR system are given to guide the design of low-intercept RF stealth SAR system.展开更多
For radar targets flying at low altitude, multiple pathways produce fade or enhancement relative to the level that would be expected in a free-space environment. In this paper, a new detec- tion method based on a wide...For radar targets flying at low altitude, multiple pathways produce fade or enhancement relative to the level that would be expected in a free-space environment. In this paper, a new detec- tion method based on a wide-ranging multi-frequency radar for low angle targets is proposed. Sequential transmitting multiple pulses with different frequencies are first applied to decorrelate the cohe- rence of the direct and reflected echoes. After receiving all echoes, the multi-frequency samples are arranged in a sort descending ac- cording to the amplitude. Some high amplitude echoes in the same range cell are accumulated to improve the signal-to-noise ratio and the optimal number of high amplitude echoes is analyzed and given by experiments. Finally, simulation results are presented to verify the effectiveness of the method.展开更多
The experiment presented in this paper is to investigate and analyze the noise reduction at low frequency using stiff light composite panels. Since these composite panels are made of lightweight and stiff materials, t...The experiment presented in this paper is to investigate and analyze the noise reduction at low frequency using stiff light composite panels. Since these composite panels are made of lightweight and stiff materials, this actuation strategy will enable the creation of composite panels for duct noise control without using traditional heavy structural mass. The results suggest that the mass-spring resonance absorption in the case of a comparatively stiff thick panel with a thin flexible plate is more efficient with minimum weight, when subjected to low-frequency (<500 Hz). The efficiency of the panel absorber depends on the mass of the thin flexible plate and the stiffness of the panel.展开更多
A space-based Very Long Baseline Interferometry (VLBI) program, named as the Cosmic Microscope, is proposed to involve dual VLBI telescopes in the space working together with giant ground-based telescopes (e.g., Squar...A space-based Very Long Baseline Interferometry (VLBI) program, named as the Cosmic Microscope, is proposed to involve dual VLBI telescopes in the space working together with giant ground-based telescopes (e.g., Square Kilometre Array, FAST, Arecibo) to image the low radio frequency Universe with the purpose of unraveling the compact structure of cosmic constituents including supermassive black holes and binaries, pulsars, astronomical masers and the underlying source, and exoplanets amongst others. The operational frequency bands are 30, 74, 330 and 1670 MHz, supporting broad science areas. The mission plans to launch two 30-m-diameter radio telescopes into 2 000 km×90 000 km elliptical orbits. The two telescopes can work in flexibly diverse modes,(i) Space-ground VLBI. The maximum space-ground baseline length is about100 000 km; it provides a high-dynamic-range imaging capacity with unprecedented high resolutions at low frequencies (0.3 mas at 1.67 GHz and 20 mas at 30 MHz) enabling studies of exoplanets and supermassive black hole binaries (which emit nanoHz gravitational waves),(ii) Space-space single-baseline VLBI. This unique baseline enables the detection of flaring hydroxyl masers, and more precise position measurement of pulsars and radio transients at mas level.(iii) Single dish mode, where each telescope can be used to monitor transient bursts and rapidly trigger follow-up VLBI observations. The large space telescope will also contribute in measuring and constraining the total angular power spectrum from the Epoch of Reionization. In short, the Cosmic Microscope offers astronomers the opportunity to conduct novel, frontier science.展开更多
In the high speed target environment,there exists serious Doppler effect in the low pulse repetition frequency(LPRF) modulated frequency stepped frequency(MFSF) radar signal.The velocity range of the target is lar...In the high speed target environment,there exists serious Doppler effect in the low pulse repetition frequency(LPRF) modulated frequency stepped frequency(MFSF) radar signal.The velocity range of the target is large and the velocity is high ambiguous,so the single method is difficult to satisfy the velocity measurement requirement.For this problem,a novel method is presented,it is a combination of cross-correlation inner frame velocity measurement and range-Doppler coupling velocity measurement.The cross-correlation inner frame method,overcoming the low Doppler tolerance of the cross-correlation between frames,can obtain the coarse velocity of the high speed target,and then the precision velocity can be obtained with the range-Doppler coupling method.The simulation results confirm the method is effective,and also it is well real-time and easy to the project application.展开更多
The accurate estimation of the rolling element bearing instantaneous rotational frequency(IRF) is the key capability of the order tracking method based on time-frequency analysis. The rolling element bearing IRF can b...The accurate estimation of the rolling element bearing instantaneous rotational frequency(IRF) is the key capability of the order tracking method based on time-frequency analysis. The rolling element bearing IRF can be accurately estimated according to the instantaneous fault characteristic frequency(IFCF). However, in an environment with a low signal-to-noise ratio(SNR), e.g., an incipient fault or function at a low speed, the signal contains strong background noise that seriously affects the effectiveness of the aforementioned method. An algorithm of signal preprocessing based on empirical mode decomposition(EMD) and wavelet shrinkage was proposed in this work. Compared with EMD denoising by the cross-correlation coefficient and kurtosis(CCK) criterion, the method of EMD soft-thresholding(ST) denoising can ensure the integrity of the signal, improve the SNR, and highlight fault features. The effectiveness of the algorithm for rolling element bearing IRF estimation by EMD ST denoising and the IFCF was validated by both simulated and experimental bearing vibration signals at a low SNR.展开更多
This paper proposes a scheme to construct time- frequency codes based on protograph low density parity check (LDPC) codes in orthogonal frequency division multiplexing (OFDM) communication systems. This approach s...This paper proposes a scheme to construct time- frequency codes based on protograph low density parity check (LDPC) codes in orthogonal frequency division multiplexing (OFDM) communication systems. This approach synthesizes two techniques: protograph LDPC codes and OFDM. One symbol of encoded information by protograph LDPC codes corresponds to one sub-carrier, namely the length of encoded information equals to the number of sub-carriers. The design of good protograph LDPC codes with short lengths is given, and the proposed proto- graph LDPC codes can be of fast encoding, which can reduce the encoding complexity and simplify encoder hardware implementa- tion. The proposed approach provides a higher coding gain in the Rayleigh fading channel. The simulation results in the Rayleigh fading channel show that the bit error rate (BER) performance of the proposed time-frequency codes is as good as random LDPC- OFDM codes and is better than Tanner LDPC-OFDM codes under the condition of different fading coefficients.展开更多
基金Sponsored by National Nature Science Foundation of China ( 51179195)National Defense Foundation of China ( 513030203-02)
文摘Elastic wave on seafloor caused by low frequency noise radiated from ship is called ship seismic wave which can be used to identify ship target. In order to analyze the wave components and the propagating properties of ship seismic wave, the numerical calculation of synthetic seismograms on seafloor aroused by a low frequency point sound source is carried out using a wave number integration technique combined with inverse Fourier transform. According to the numerical example of hard seafloor, the time series of seismic wave on seafloor are mostly composed of interface waves and normal mode waves. Each normal mode wave has a well defined low cut-off frequency, while the interface wave doesn't have. The frequency dispersion of normal mode wave is obvious when frequency is lower than 100Hz, while the interface wave is dispersive only in the infra-sound frequency range. The time series of seismic wave is dominated by the interface wave when the source frequency is less than the minimal cut-off frequency of normal mode wave.
基金supported by the National Natural Science Foundation of China(1140440611374072)
文摘The pressure and horizontal particle velocity combined descriptions in the very low frequency acoustic field of shallow wa- ter integrated with the concept of effective depth of Pekeris wave- guide is proposed, especially the active component of the pressure and horizontal particle velocity cross-spectrum, also called ho- rizontal complex cross acoustic intensity, when only two normal modes are trapped in the waveguide. Both the approximate theo- retic analysis and the numerical results show that the sign of the horizontal complex cross acoustic intensity active component is independent of the range when vertically deployed receiving dual sensors are placed in appropriate depths, the sum of which is equal to the waveguide effective depth, so it can be used to tell whether the sound source is near the surface or underwater; while the range rate is expected to be measured by utilizing the sign distribution characteristic of the reactive component. The further robustness analysis of the depth classification algorithm shows that the existence of shear waves in semi infinite basement and the change of acoustic velocity profiles have few effects on the application of this method, and the seabed attenuation will limit the detection range, but the algorithm still has a good robustness in the valid detection range.
文摘In order to solve the problem of carrier frequency blind estimation of PSK signals in electronic reconnaissance, a new estimation method was proposed. The phase shift keying(PSK) signal was divided into several overlapping intervals which had equal length, and the spectrum concentration measures of every interval were extracted by the FFT. And then, using the grid-density clustering, the spectrum concentration measures were classified into two categories, the narrowband spectrum interval and the wideband spectrum interval. The narrowband spectrum interval was regarded as the characteristic class. The spectrums of the characteristic class were accumulated to estimate the carrier frequency of PSK signal. The proposed method had avoided the non linear operation in the traditional PSK signal carrier frequency estimation algorithm. Thus, the signal to noise ratio (SNR) threshold was remarkably decreased. Moreover, the proposed method did not need the prior knowledge of the signal, which was suitable to the electronic reconnaissance occasion. Experimental results had verified the validity of the proposed estimation method in low SNR.
基金Project supported by National Nature Science Foundation of China (51107105), Sichuan Science Fund for Young Scholars (2011JQ0009).
文摘Both the real part and imaginary part of complex permittivity approximately have a log-linear frequency dependency at low fre- quencies, especially at ultra-low frequencies under conditions of different moisture concentrations and temperatures, which is recognized as the low frequency dispersion (LFD). In order to explain this dispersion, a new mechanism of dielectric response of LFD of oil-paper insula- tion is proposed. A simplified one-dimensional mathematical model of concentration polarization carrier caused by slow migration is developed and solved, which indicates that ion mobility is closely related to the size of gap and the adsorption capacity of cellulose molecu- lar chains to ions. A stochastic statistical model of the carrier mobility induced LFD is also developed. Moreover, actual tests under 50 °C and 2% moisture content were put forward, as well as simulations with according current waveforms. The simulation results agreed well with the experimental data in that concentration polarization of carriers caused by slow migration is the probable cause of low frequency dispersion of dielectric response for oil-paper insulation diagnosis.
基金supported by the National Key R&D Program of China(2017YFC1405600)the Fundamental Research Funds for the Central Universities(JB180213)
文摘Not confined to a certain point,such as waveform,this paper systematically studies the low-intercept radio frequency(RF)stealth design of synthetic aperture radar(SAR)from the system level.The study is carried out from two levels.In the first level,the maximum low-intercept range equation of the conventional SAR system is deduced firstly,and then the maximum low-intercept range equation of the multiple-input multiple-output SAR system is deduced.In the second level,the waveform design and imaging method of the low-intercept RF SAR system are given and verified by simulation.Finally,the main technical characteristics of the lowintercept RF stealth SAR system are given to guide the design of low-intercept RF stealth SAR system.
基金supported by the National Natural Science Foundation of China(6137213661372134+2 种基金61172137)the Fundamental Research Funds for the Central Universities(K5051202005)the China Scholarship Council(CSC)
文摘For radar targets flying at low altitude, multiple pathways produce fade or enhancement relative to the level that would be expected in a free-space environment. In this paper, a new detec- tion method based on a wide-ranging multi-frequency radar for low angle targets is proposed. Sequential transmitting multiple pulses with different frequencies are first applied to decorrelate the cohe- rence of the direct and reflected echoes. After receiving all echoes, the multi-frequency samples are arranged in a sort descending ac- cording to the amplitude. Some high amplitude echoes in the same range cell are accumulated to improve the signal-to-noise ratio and the optimal number of high amplitude echoes is analyzed and given by experiments. Finally, simulation results are presented to verify the effectiveness of the method.
文摘The experiment presented in this paper is to investigate and analyze the noise reduction at low frequency using stiff light composite panels. Since these composite panels are made of lightweight and stiff materials, this actuation strategy will enable the creation of composite panels for duct noise control without using traditional heavy structural mass. The results suggest that the mass-spring resonance absorption in the case of a comparatively stiff thick panel with a thin flexible plate is more efficient with minimum weight, when subjected to low-frequency (<500 Hz). The efficiency of the panel absorber depends on the mass of the thin flexible plate and the stiffness of the panel.
基金Supported by the State Key Program of National Natural Science of China (60534010), the National Basic Research Program of China (973 Program) (2009CB320604), the National Natural Science foundation of China (60674021, 60804024, 60974043), the Funds for Creative Research Groups of China (60821063), the 111 Project (B08015), and Research Fund for the Doctoral Program of Higher Education of China (20060145019)
基金Acknowledgments
This work was supported by the National High Technology Research and Development Program of China under grant No. 2006AAOAA102-12 and the National Natural Science Foundation of China (Grant No. 40774064). The authors would like to express their sincere thanks to TH oil field for providing field data sets.
基金Supported with funding from the Ministry of Science and Technology of China(2018YFA0404600)the Chinese Academy of Sciences(114231KYSB20170003)
文摘A space-based Very Long Baseline Interferometry (VLBI) program, named as the Cosmic Microscope, is proposed to involve dual VLBI telescopes in the space working together with giant ground-based telescopes (e.g., Square Kilometre Array, FAST, Arecibo) to image the low radio frequency Universe with the purpose of unraveling the compact structure of cosmic constituents including supermassive black holes and binaries, pulsars, astronomical masers and the underlying source, and exoplanets amongst others. The operational frequency bands are 30, 74, 330 and 1670 MHz, supporting broad science areas. The mission plans to launch two 30-m-diameter radio telescopes into 2 000 km×90 000 km elliptical orbits. The two telescopes can work in flexibly diverse modes,(i) Space-ground VLBI. The maximum space-ground baseline length is about100 000 km; it provides a high-dynamic-range imaging capacity with unprecedented high resolutions at low frequencies (0.3 mas at 1.67 GHz and 20 mas at 30 MHz) enabling studies of exoplanets and supermassive black hole binaries (which emit nanoHz gravitational waves),(ii) Space-space single-baseline VLBI. This unique baseline enables the detection of flaring hydroxyl masers, and more precise position measurement of pulsars and radio transients at mas level.(iii) Single dish mode, where each telescope can be used to monitor transient bursts and rapidly trigger follow-up VLBI observations. The large space telescope will also contribute in measuring and constraining the total angular power spectrum from the Epoch of Reionization. In short, the Cosmic Microscope offers astronomers the opportunity to conduct novel, frontier science.
文摘In the high speed target environment,there exists serious Doppler effect in the low pulse repetition frequency(LPRF) modulated frequency stepped frequency(MFSF) radar signal.The velocity range of the target is large and the velocity is high ambiguous,so the single method is difficult to satisfy the velocity measurement requirement.For this problem,a novel method is presented,it is a combination of cross-correlation inner frame velocity measurement and range-Doppler coupling velocity measurement.The cross-correlation inner frame method,overcoming the low Doppler tolerance of the cross-correlation between frames,can obtain the coarse velocity of the high speed target,and then the precision velocity can be obtained with the range-Doppler coupling method.The simulation results confirm the method is effective,and also it is well real-time and easy to the project application.
基金Project(51275030)supported by the National Natural Science Foundation of ChinaProject(2016JBM051)supported by the Fundamental Research Funds for the Central Universities,China
文摘The accurate estimation of the rolling element bearing instantaneous rotational frequency(IRF) is the key capability of the order tracking method based on time-frequency analysis. The rolling element bearing IRF can be accurately estimated according to the instantaneous fault characteristic frequency(IFCF). However, in an environment with a low signal-to-noise ratio(SNR), e.g., an incipient fault or function at a low speed, the signal contains strong background noise that seriously affects the effectiveness of the aforementioned method. An algorithm of signal preprocessing based on empirical mode decomposition(EMD) and wavelet shrinkage was proposed in this work. Compared with EMD denoising by the cross-correlation coefficient and kurtosis(CCK) criterion, the method of EMD soft-thresholding(ST) denoising can ensure the integrity of the signal, improve the SNR, and highlight fault features. The effectiveness of the algorithm for rolling element bearing IRF estimation by EMD ST denoising and the IFCF was validated by both simulated and experimental bearing vibration signals at a low SNR.
基金supported by the Beijing Natural Science Foundation of China (4102050)the National Natural Science of Foundation of China (NSFC)-Korea Science and Engineering Foundation (KOSF) Joint Research Project of China and Korea (60811140343)
文摘This paper proposes a scheme to construct time- frequency codes based on protograph low density parity check (LDPC) codes in orthogonal frequency division multiplexing (OFDM) communication systems. This approach synthesizes two techniques: protograph LDPC codes and OFDM. One symbol of encoded information by protograph LDPC codes corresponds to one sub-carrier, namely the length of encoded information equals to the number of sub-carriers. The design of good protograph LDPC codes with short lengths is given, and the proposed proto- graph LDPC codes can be of fast encoding, which can reduce the encoding complexity and simplify encoder hardware implementa- tion. The proposed approach provides a higher coding gain in the Rayleigh fading channel. The simulation results in the Rayleigh fading channel show that the bit error rate (BER) performance of the proposed time-frequency codes is as good as random LDPC- OFDM codes and is better than Tanner LDPC-OFDM codes under the condition of different fading coefficients.