This paper presents the design and ground verification for vision-based relative navigation systems of microsatellites,which offers a comprehensive hardware design solution and a robust experimental verification metho...This paper presents the design and ground verification for vision-based relative navigation systems of microsatellites,which offers a comprehensive hardware design solution and a robust experimental verification methodology for practical implementation of vision-based navigation technology on the microsatellite platform.Firstly,a low power consumption,light weight,and high performance vision-based relative navigation optical sensor is designed.Subsequently,a set of ground verification system is designed for the hardware-in-the-loop testing of the vision-based relative navigation systems.Finally,the designed vision-based relative navigation optical sensor and the proposed angles-only navigation algorithms are tested on the ground verification system.The results verify that the optical simulator after geometrical calibration can meet the requirements of the hardware-in-the-loop testing of vision-based relative navigation systems.Based on experimental results,the relative position accuracy of the angles-only navigation filter at terminal time is increased by 25.5%,and the relative speed accuracy is increased by 31.3% compared with those of optical simulator before geometrical calibration.展开更多
Recent advancements in satellite technologies and the declining cost of access to space have led to the emergence of large satellite constellations in Low Earth Orbit(LEO).However,these constellations often rely on be...Recent advancements in satellite technologies and the declining cost of access to space have led to the emergence of large satellite constellations in Low Earth Orbit(LEO).However,these constellations often rely on bent-pipe architecture,resulting in high communication costs.Existing onboard inference architectures suffer from limitations in terms of low accuracy and inflexibility in the deployment and management of in-orbit applications.To address these challenges,we propose a cloud-native-based satellite design specifically tailored for Earth Observation tasks,enabling diverse computing paradigms.In this work,we present a case study of a satellite-ground collaborative inference system deployed in the Tiansuan constellation,demonstrating a remarkable 50%accuracy improvement and a substantial 90%data reduction.Our work sheds light on in-orbit energy,where in-orbit computing accounts for 17%of the total onboard energy consumption.Our approach represents a significant advancement of cloud-native satellite,aiming to enhance the accuracy of in-orbit computing while simultaneously reducing communication cost.展开更多
This paper presents an approximation method to display realistic pictures of numerical control (NC) machining simulation very quickly. T he tool movement envelope is divided into many small regions and the normal to...This paper presents an approximation method to display realistic pictures of numerical control (NC) machining simulation very quickly. T he tool movement envelope is divided into many small regions and the normal to t hese small regions is calculated. The system saves the calculated result in a fi le before starting animation display. When the system starts displaying machinin g animation, it does not need to calculate small triangular facets normal to the workpiece surface. It only needs to find out what part of the cutter cuts the w orkpiece surface and to read the normal from the file. A highly efficient NC cod e verification method is also presented in this paper. The method first detects the error in z direction. If some points are reported to be out of the tolerance , the system divides neighborhood of these points into smaller grids and calcula tes the normal surface at each grid intersection and the error in the normal ve ctor direction.展开更多
The mathematical model used to describe the detonation multi-physics phenomenon is usually given by highly coupled nonlinear partial differential equations. Numerical simulation and the computer aided engineering (CAE...The mathematical model used to describe the detonation multi-physics phenomenon is usually given by highly coupled nonlinear partial differential equations. Numerical simulation and the computer aided engineering (CAE) technique has become the third pillar of detonation research, along with theory and experiment, due to the detonation phenomenon is difficult to explain by the theoretical analysis, and the cost required to accredit the reliability of detonation products is very high, even some physical experiments of detonation are impossible. The numerical simulation technique can solve these complex problems in the real situation repeatedly and reduce the design cost and time stunningly. But the reliability of numerical simulation software and the serviceability of the computational result seriously hinders the extension, application and the self-restoration of the simulation software, restricts its independently innovational ability. This article deals with the physical modeling, numerical simulation, and software development of detonation in a unified way. Verification and validation and uncertainty quantification (V&V&UQ) is an important approach in ensuring the credibility of the modeling and simulation of detonation. V&V of detonation is based on our independently developed detonation multiphysics software-LAD2D. We propose the verification method based on mathematical theory and program function as well as availability of its program execution. Validation is executed by comparing with the experiment data. At last, we propose the future prospect of numerical simulation software and the CAE technique, and we also pay attention to the research direction of V&V&UQ.展开更多
To perform an integral simulation of a pool-type reactor using CFD code,a multi-physics coupled code MPC-LBE for an LBE-cooled reactor was proposed by integrating a point kinetics model and a fuel pin heat transfer mo...To perform an integral simulation of a pool-type reactor using CFD code,a multi-physics coupled code MPC-LBE for an LBE-cooled reactor was proposed by integrating a point kinetics model and a fuel pin heat transfer model into self-developed CFD code.For code verification,a code-to-code comparison was employed to validate the CFD code.Furthermore,a typical BT transient benchmark on the LBE-cooled XADS reactor was selected for verification in terms of the integral or system performance.Based on the verification results,it was demonstrated that the MPC-LBE coupled code can perform thermal-hydraulics or safety analyses for analysis for processes involved in LBE-cooled pool-type reactors.展开更多
Position-spoofing-based attacks seriously threaten the security of Vehicular Ad Hoc Network(VANET).An effective solution to detect position spoofing is location verification.However,since vehicles move fast and the to...Position-spoofing-based attacks seriously threaten the security of Vehicular Ad Hoc Network(VANET).An effective solution to detect position spoofing is location verification.However,since vehicles move fast and the topology changes quickly in VANET,the static location verification method in Wireless Sensor Network(WSN) is not suitable for VANET.Taking into account the dynamic changing topology of VANET and collusion,we propose a Time-Slice-based Location Verification scheme,named TSLV,to resist position spoofing in VANET.Specifically,TSLV transforms the dynamic topology into static topology by time slice and each time slice corresponds to a verification process.The verifier can implement location verification for the corresponding prover.During the verification process,the verifier first filters out vehicles which provide unreasonably claimed locations,and then uses the Mean Square Error(MSE)-based cluster approach to separate the consistent vehicles by time slice,and uses the consistent set for its verification.In addition,security analysis and simulation show that TSLV can defend against the collusion attack effectively.展开更多
A multi-proxy quantum group signature scheme with threshold shared verification is proposed. An original signer may authorize a proxy group as his proxy agent. Then only the cooperation of all the signers in the proxy...A multi-proxy quantum group signature scheme with threshold shared verification is proposed. An original signer may authorize a proxy group as his proxy agent. Then only the cooperation of all the signers in the proxy group can generate the proxy signature on behalf of the original signer. In the scheme, any t or more of n receivers can verify the message and any t - 1 or fewer receivers cannot verify the validity of the proxy signature.展开更多
Accelerate processor, efficient software and pervasive connections provide sensor nodes with more powerful computation and storage ability, which can offer various services to user. Based on these atomic services, dif...Accelerate processor, efficient software and pervasive connections provide sensor nodes with more powerful computation and storage ability, which can offer various services to user. Based on these atomic services, different sensor nodes can cooperate and compose with each other to complete more complicated tasks for user. However, because of the regional characteristic of sensor nodes, merging data with different sensitivities become a primary requirement to the composite services, and information flow security should be intensively considered during service composition. In order to mitigate the great cost caused by the complexity of modeling and the heavy load of single-node verification to the energy-limited sensor node, in this paper, we propose a new distributed verification framework to enforce information flow security on composite services of smart sensor network. We analyze the information flows in composite services and specify security constraints for each service participant. Then we propose an algorithm over the distributed verification framework involving each sensor node to participate in the composite service verification based on the security constraints. The experimental results indicate that our approach can reduce the cost of verification and provide a better load balance.展开更多
The optocoupler is a weak link in the inertial navigation platform of a kind of guided munitions.It is necessary to use accelerated storage test to verify the storage life of long storage products.Especially for small...The optocoupler is a weak link in the inertial navigation platform of a kind of guided munitions.It is necessary to use accelerated storage test to verify the storage life of long storage products.Especially for small sample products,it is very important to obtain prior information for the design and implementation of accelerated degradation test.In this paper,the optocoupler failure mechanism verification test is designed and the experimental results are analyzed and the prior information is obtained.The results show that optocouplers have two failure modes,one is sudden failure and the other is degradation failure;the maximum temperature stress of optocoupler can’t exceed 140℃;the increase of leakage current of optocoupler is caused by movable ions contaminating the LED chip.The surface leakage current is proportional to the adsorption amount.The increase of leakage current makes p-n junction tunneling effect occur which LEDs the failure of the optocoupler.The lifetime distribution model of the optocoupler is determined by the failure physics.The lifetime of the optocoupler is subject to the lognormal distribution.The degeneracy orbit of the optocoupler leakage current is described by a power law model.The estimated values of the orbital parameters are initially calculated and the parameters of its life distribution function are deduced.The above information lays a good foundation for the optimization design and data processing of the accelerated degradation experiment.展开更多
As location-based techniques and applications have become ubiquitous in emerging wireless networks, the verification of location information has become more important. In recent years, there has been an explosion of a...As location-based techniques and applications have become ubiquitous in emerging wireless networks, the verification of location information has become more important. In recent years, there has been an explosion of activity related to lo- cation-verification techniques in wireless networks. In particular, there has been a specific focus on intelligent transport systems because of the mission-critical nature of vehicle location verification. In this paper, we review recent research on wireless location verification related to vehicular networks. We focus on location verification systems that rely on for- mal mathematical classification frameworks and show how many systems are either partially or fully encompassed by such frameworks.展开更多
Plasma jet triggered gas gap switch has obvious advantages in fast control switch.The development of the plasma in the ambient medium is the key factor affecting the triggering conduction of the gas switch.However,the...Plasma jet triggered gas gap switch has obvious advantages in fast control switch.The development of the plasma in the ambient medium is the key factor affecting the triggering conduction of the gas switch.However,the plasma jet process and its characteristic parameters are complicated and the existing test methods cannot fully characterize its development laws.In this work,a two-dimensional transient fluid calculation model of the plasma jet process of the gas gap switch is established based on the renormalization-group k-εturbulence equation.The results show that the characteristic parameters and morphological evolution of the plasma jet are basically consistent with the experimental results,which verifies the accuracy of the simulation model calculation.The plasma jet is a long strip with an initial velocity of 1.0 km·s-1and develops in both axial and radial directions.The jet velocity fluctuates significantly with axial height.As the plasma jet enters the main gap,the pressure inside the trigger cavity drops by80%,resulting in a rapid drop in the jet velocity.When the plasma jet head interacts with the atmosphere,the two-phase fluid compresses each other,generating a forward-propelled pressure wave.The plasma jet heads flow at high velocity,a negative pressure zone is formed in the middle part of the jet,and the pressure peak decreases gradually with height.As the value of the inlet pressure increases,the characteristic parameters of the plasma jet increase.The entrainment phenomenon is evident,which leads to an increase in the pressure imbalance of the atmospheric gas medium,leading to a significant Coanda effect.Compared with air,the characteristic parameters of a plasma jet in SF6are lower,and the morphological evolution is significantly suppressed.The results of this study can provide some insight into the mechanism of action of the switch jet plasma development process.展开更多
Previous studies have proposed higher requirements for the transient characteristics of a DC transformer used in a flexible high-voltage direct current(HVDC) system to achieve faster sampling speed and meet wider band...Previous studies have proposed higher requirements for the transient characteristics of a DC transformer used in a flexible high-voltage direct current(HVDC) system to achieve faster sampling speed and meet wider bandwidth requirements of the control and protection signal, and to eventually suppress the large transient fault current. In this study, a transient characteristics verification method is proposed for transient characteristics verification of a DC transformer used in a flexible HVDC system based on resampling technology and LabVIEW measurement technology after analyzing the key technology for transient characteristics verification of a DC transformer. A laboratory experiment for the transient characteristics of a full-fiber electronic DC transformer is conducted, and experimental results show that such verification method can be employed for frequency response and step response verification of a DC transformer at 10% of the rated voltage and current, and can eventually improve the screening of a DC transformer.展开更多
This paper introduces the implementation and data analysis associated with a state-wide power quality monitoring and analysis system in China. Corporation specifications on power quality monitors as well as on communi...This paper introduces the implementation and data analysis associated with a state-wide power quality monitoring and analysis system in China. Corporation specifications on power quality monitors as well as on communication protocols are formulated for data transmission. Big data platform and related technologies are utilized for data storage and computation. Compliance verification analysis and a power quality performance assessment are conducted, and a visualization tool for result presentation is finally presented.展开更多
The plasma optical boundary reconstruction technique based on Hommen's theory is promising for future tokamaks with high parameters. In this work, we conduct detailed analysis and simulation verification to estima...The plasma optical boundary reconstruction technique based on Hommen's theory is promising for future tokamaks with high parameters. In this work, we conduct detailed analysis and simulation verification to estimate the ‘logic loophole' of this technique. The finite-width effect and unpredictable errors reduce the technique's reliability, which leads to this loophole. Based on imaging theory, the photos of a virtual camera are simulated by integrating the assumed luminous intensity of plasma. Based on Hommen's theory, the plasma optical boundary is reconstructed from the photos. Comparing the reconstructed boundary with the one assumed, the logic loophole and its two effects are quantitatively estimated. The finite-width effect is related to the equivalent thickness of the luminous layer, which is generally about 2-4 cm but sometimes larger. The level of unpredictable errors is around 0.65 cm. The technique based on Hommen's theory is generally reliable, but finite-width effect and unpredictable errors have to be taken into consideration in some scenarios. The parameters of HL-2M are applied in this work.展开更多
Many websites use verification codes to prevent users from using the machine automatically to register,login,malicious vote or irrigate but it brought great burden to the enterprises involved in internet marketing as ...Many websites use verification codes to prevent users from using the machine automatically to register,login,malicious vote or irrigate but it brought great burden to the enterprises involved in internet marketing as entering the verification code manually.Improving the verification code security system needs the identification method as the corresponding testing system.We propose an anisotropic heat kernel equation group which can generate a heat source scale space during the kernel evolution based on infinite heat source axiom,design a multi-step anisotropic verification code identification algorithm which includes core procedure of building anisotropic heat kernel,settingwave energy information parameters,combing outverification codccharacters and corresponding peripheral procedure of gray scaling,binarizing,denoising,normalizing,segmenting and identifying,give out the detail criterion and parameter set.Actual test show the anisotropic heat kernel identification algorithm can be used on many kinds of verification code including text characters,mathematical,Chinese,voice,3D,programming,video,advertising,it has a higher rate of 25%and 50%than neural network and context matching algorithm separately for Yahoo site,49%and 60%for Captcha site,20%and 52%for Baidu site,60%and 65%for 3DTakers site,40%,and 51%.for MDP site.展开更多
A non-sputtering discharge is utilized to verify the effect of replacement of gas ions by metallic ions and consequent decrease in the secondary electron emission coefficient in the discharge current curves in high-po...A non-sputtering discharge is utilized to verify the effect of replacement of gas ions by metallic ions and consequent decrease in the secondary electron emission coefficient in the discharge current curves in high-power impulse magnetron sputtering (HiPIMS). In the non-sputtering discharge involving hydrogen, replacement of ions is avoided while the rarefaction still contributes. The initial peak and ensuing decay disappear and all the discharge current curves show a similar feature as the HiPIMS discharge of materials with low sputtering yields such as carbon. The results demonstrate the key effect of ion replacement during sputtering.展开更多
The study of vehicular ad-hoc networks(VANETs)has received significant attention among academia;even so,its security and privacy still become a central issue that is wide-open to discuss.The authentication schemes dep...The study of vehicular ad-hoc networks(VANETs)has received significant attention among academia;even so,its security and privacy still become a central issue that is wide-open to discuss.The authentication schemes deployed in VANETs have a substantial impact on its security and privacy.Many researchers have proposed a variety of schemes related to the information verification and efficiency improvement in VANETs.In recent years,many papers have proposed identity-based batch verification(IBV)schemes in regard to diminishing overhead in the message verification process in VANETs.This survey begins with providing background information about VANETs and clarifying its security and privacy,as well as performance requirements that must be satisfied.After presenting an outlook of some relevant surveys of VANETs,a brief review of some IBV schemes published in recent years is conferred.The detailed approach of each scheme,with a comprehensive comparison between them,has been provided afterward.Finally,we summarize those recent studies and possible future improvements.展开更多
Ensuring the correctness of answers to substring queries has not been a concern for consumers working within the traditional confines of their own organisational infrastructure. This is due to the fact that organisati...Ensuring the correctness of answers to substring queries has not been a concern for consumers working within the traditional confines of their own organisational infrastructure. This is due to the fact that organisations generally trust their handling of their own data hosted on their own servers and networks. With cloud computing however, where both data and processing are delegated to unknown servers, guarantees of the correctness of queries need to be available. The verification of the results of substring searches has not been given much focus to date within the wider scope of data and query, verification. We present a verification scheme for existential substring searc, hes on text files, which is the first of its kind to satisfy the desired properties of authenticity, completeness, and freshness. The scheme is based on suffix arrays, Merkle hash trees and cryptographic hashes to provide strong guarantees of correctness for the consumer, even in fully untrusted environments. We provide a description of our scheme, along with the results of experiments conducted on a fully-working prototype.展开更多
The trustworthiness of virtual machines is a big security issue in cloud computing. In this paper, we aimed at designing a practical trustworthiness mechanism in virtual environment. With the assist of a third certifi...The trustworthiness of virtual machines is a big security issue in cloud computing. In this paper, we aimed at designing a practical trustworthiness mechanism in virtual environment. With the assist of a third certificate agent, the cloud user generates a trust base and extends it to its VMs. For each service running on the VM, a hash value is generated from all the necessary modules, and these hash values are organized and maintained with a specially designed hash tree whose root is extended from the user's trust base. Before the VM loads a service, the hash tree is verified from the coordinated hash value to check the trustworthiness of the service.展开更多
To overcome the shortcomings of the traditional passive ranging technology based on image, such as poor ranging accuracy, low reliability and complex system, a new visual passive ranging method based on re-entrant coa...To overcome the shortcomings of the traditional passive ranging technology based on image, such as poor ranging accuracy, low reliability and complex system, a new visual passive ranging method based on re-entrant coaxial optical path is presented. The target image is obtained using double cameras with coaxial optical path. Since there is imaging optical path difference between the cameras, the images are different. In comparison of the image differences, the target range could be reversed. The principle of the ranging method and the ranging model are described. The relationship among parameters in the ranging process is analyzed quantitatively. Meanwhile,the system composition and technical realization scheme are also presented. Also, the principle of the method is verified by the equivalent experiment. The experimental results show that the design scheme is correct and feasible with good robustness. Generally, the ranging error is less than 10% with good convergence. The optical path is designed in a re-entrant mode to reduce the volume and weight of the system. Through the coaxial design,the visual passive range of the targets with any posture can be obtained in real time. The system can be widely used in electro-optical countermeasure and concealed photoelectric detection.展开更多
基金supported in part by the Doctoral Initiation Fund of Nanchang Hangkong University(No.EA202403107)Jiangxi Province Early Career Youth Science and Technology Talent Training Project(No.CK202403509).
文摘This paper presents the design and ground verification for vision-based relative navigation systems of microsatellites,which offers a comprehensive hardware design solution and a robust experimental verification methodology for practical implementation of vision-based navigation technology on the microsatellite platform.Firstly,a low power consumption,light weight,and high performance vision-based relative navigation optical sensor is designed.Subsequently,a set of ground verification system is designed for the hardware-in-the-loop testing of the vision-based relative navigation systems.Finally,the designed vision-based relative navigation optical sensor and the proposed angles-only navigation algorithms are tested on the ground verification system.The results verify that the optical simulator after geometrical calibration can meet the requirements of the hardware-in-the-loop testing of vision-based relative navigation systems.Based on experimental results,the relative position accuracy of the angles-only navigation filter at terminal time is increased by 25.5%,and the relative speed accuracy is increased by 31.3% compared with those of optical simulator before geometrical calibration.
基金supported by National Natural Science Foundation of China(62032003).
文摘Recent advancements in satellite technologies and the declining cost of access to space have led to the emergence of large satellite constellations in Low Earth Orbit(LEO).However,these constellations often rely on bent-pipe architecture,resulting in high communication costs.Existing onboard inference architectures suffer from limitations in terms of low accuracy and inflexibility in the deployment and management of in-orbit applications.To address these challenges,we propose a cloud-native-based satellite design specifically tailored for Earth Observation tasks,enabling diverse computing paradigms.In this work,we present a case study of a satellite-ground collaborative inference system deployed in the Tiansuan constellation,demonstrating a remarkable 50%accuracy improvement and a substantial 90%data reduction.Our work sheds light on in-orbit energy,where in-orbit computing accounts for 17%of the total onboard energy consumption.Our approach represents a significant advancement of cloud-native satellite,aiming to enhance the accuracy of in-orbit computing while simultaneously reducing communication cost.
文摘This paper presents an approximation method to display realistic pictures of numerical control (NC) machining simulation very quickly. T he tool movement envelope is divided into many small regions and the normal to t hese small regions is calculated. The system saves the calculated result in a fi le before starting animation display. When the system starts displaying machinin g animation, it does not need to calculate small triangular facets normal to the workpiece surface. It only needs to find out what part of the cutter cuts the w orkpiece surface and to read the normal from the file. A highly efficient NC cod e verification method is also presented in this paper. The method first detects the error in z direction. If some points are reported to be out of the tolerance , the system divides neighborhood of these points into smaller grids and calcula tes the normal surface at each grid intersection and the error in the normal ve ctor direction.
基金supported by Science Challenge Project [No TZ2018001]Shandong Provincial Natural Science Foundation [No ZR2017BA014]+1 种基金National Natural Science Foundation of China [No91630312]the Development Program for Defense Ministry of China [No.C1520110002]
文摘The mathematical model used to describe the detonation multi-physics phenomenon is usually given by highly coupled nonlinear partial differential equations. Numerical simulation and the computer aided engineering (CAE) technique has become the third pillar of detonation research, along with theory and experiment, due to the detonation phenomenon is difficult to explain by the theoretical analysis, and the cost required to accredit the reliability of detonation products is very high, even some physical experiments of detonation are impossible. The numerical simulation technique can solve these complex problems in the real situation repeatedly and reduce the design cost and time stunningly. But the reliability of numerical simulation software and the serviceability of the computational result seriously hinders the extension, application and the self-restoration of the simulation software, restricts its independently innovational ability. This article deals with the physical modeling, numerical simulation, and software development of detonation in a unified way. Verification and validation and uncertainty quantification (V&V&UQ) is an important approach in ensuring the credibility of the modeling and simulation of detonation. V&V of detonation is based on our independently developed detonation multiphysics software-LAD2D. We propose the verification method based on mathematical theory and program function as well as availability of its program execution. Validation is executed by comparing with the experiment data. At last, we propose the future prospect of numerical simulation software and the CAE technique, and we also pay attention to the research direction of V&V&UQ.
基金supported by the National Natural Science Foundation of China(Nos.12005025,41774190).
文摘To perform an integral simulation of a pool-type reactor using CFD code,a multi-physics coupled code MPC-LBE for an LBE-cooled reactor was proposed by integrating a point kinetics model and a fuel pin heat transfer model into self-developed CFD code.For code verification,a code-to-code comparison was employed to validate the CFD code.Furthermore,a typical BT transient benchmark on the LBE-cooled XADS reactor was selected for verification in terms of the integral or system performance.Based on the verification results,it was demonstrated that the MPC-LBE coupled code can perform thermal-hydraulics or safety analyses for analysis for processes involved in LBE-cooled pool-type reactors.
基金supported by National Natural Science Foundation of China under Grant No.60972036
文摘Position-spoofing-based attacks seriously threaten the security of Vehicular Ad Hoc Network(VANET).An effective solution to detect position spoofing is location verification.However,since vehicles move fast and the topology changes quickly in VANET,the static location verification method in Wireless Sensor Network(WSN) is not suitable for VANET.Taking into account the dynamic changing topology of VANET and collusion,we propose a Time-Slice-based Location Verification scheme,named TSLV,to resist position spoofing in VANET.Specifically,TSLV transforms the dynamic topology into static topology by time slice and each time slice corresponds to a verification process.The verifier can implement location verification for the corresponding prover.During the verification process,the verifier first filters out vehicles which provide unreasonably claimed locations,and then uses the Mean Square Error(MSE)-based cluster approach to separate the consistent vehicles by time slice,and uses the consistent set for its verification.In addition,security analysis and simulation show that TSLV can defend against the collusion attack effectively.
基金Project supported by the National Basic Research Program of China (973 Program) (Grant No 2007CB311100)the National High Technology Research and Development Program of China (Grant Nos 2006AA01Z419 and 20060101Z4015)+4 种基金the Major Research plan of the National Natural Science Foundation of China (Grant No 90604023)2008 Scientific Research Common Program of Beijing Municipal Commission of Education The Scientific Research Foundation for the Youth of Beijing University of Technology (Grant No 97007016200701)the National Research Foundation for the Doctoral Program of Higher Educationof China (Grant No 20040013007)the National Laboratory for Modern Communications Science Foundation of China (GrantNo 9140C1101010601)the Doctor Scientific Research Activation Foundation of Beijing University of Technology (Grant No 52007016200702)
文摘A multi-proxy quantum group signature scheme with threshold shared verification is proposed. An original signer may authorize a proxy group as his proxy agent. Then only the cooperation of all the signers in the proxy group can generate the proxy signature on behalf of the original signer. In the scheme, any t or more of n receivers can verify the message and any t - 1 or fewer receivers cannot verify the validity of the proxy signature.
基金supported in part by National Natural Science Foundation of China(61502368,61303033,U1135002 and U1405255)the National High Technology Research and Development Program(863 Program)of China(No.2015AA017203)+1 种基金the Fundamental Research Funds for the Central Universities(XJS14072,JB150308)the Aviation Science Foundation of China(No.2013ZC31003,20141931001)
文摘Accelerate processor, efficient software and pervasive connections provide sensor nodes with more powerful computation and storage ability, which can offer various services to user. Based on these atomic services, different sensor nodes can cooperate and compose with each other to complete more complicated tasks for user. However, because of the regional characteristic of sensor nodes, merging data with different sensitivities become a primary requirement to the composite services, and information flow security should be intensively considered during service composition. In order to mitigate the great cost caused by the complexity of modeling and the heavy load of single-node verification to the energy-limited sensor node, in this paper, we propose a new distributed verification framework to enforce information flow security on composite services of smart sensor network. We analyze the information flows in composite services and specify security constraints for each service participant. Then we propose an algorithm over the distributed verification framework involving each sensor node to participate in the composite service verification based on the security constraints. The experimental results indicate that our approach can reduce the cost of verification and provide a better load balance.
基金supported by the National Natural Science Foundation of China of China(No.61471385)。
文摘The optocoupler is a weak link in the inertial navigation platform of a kind of guided munitions.It is necessary to use accelerated storage test to verify the storage life of long storage products.Especially for small sample products,it is very important to obtain prior information for the design and implementation of accelerated degradation test.In this paper,the optocoupler failure mechanism verification test is designed and the experimental results are analyzed and the prior information is obtained.The results show that optocouplers have two failure modes,one is sudden failure and the other is degradation failure;the maximum temperature stress of optocoupler can’t exceed 140℃;the increase of leakage current of optocoupler is caused by movable ions contaminating the LED chip.The surface leakage current is proportional to the adsorption amount.The increase of leakage current makes p-n junction tunneling effect occur which LEDs the failure of the optocoupler.The lifetime distribution model of the optocoupler is determined by the failure physics.The lifetime of the optocoupler is subject to the lognormal distribution.The degeneracy orbit of the optocoupler leakage current is described by a power law model.The estimated values of the orbital parameters are initially calculated and the parameters of its life distribution function are deduced.The above information lays a good foundation for the optimization design and data processing of the accelerated degradation experiment.
基金supported by the University of New South Wales and the Australian Research Council under grant No.DP120102607
文摘As location-based techniques and applications have become ubiquitous in emerging wireless networks, the verification of location information has become more important. In recent years, there has been an explosion of activity related to lo- cation-verification techniques in wireless networks. In particular, there has been a specific focus on intelligent transport systems because of the mission-critical nature of vehicle location verification. In this paper, we review recent research on wireless location verification related to vehicular networks. We focus on location verification systems that rely on for- mal mathematical classification frameworks and show how many systems are either partially or fully encompassed by such frameworks.
基金supported by National Natural Science Foundation of China(No.52107142)。
文摘Plasma jet triggered gas gap switch has obvious advantages in fast control switch.The development of the plasma in the ambient medium is the key factor affecting the triggering conduction of the gas switch.However,the plasma jet process and its characteristic parameters are complicated and the existing test methods cannot fully characterize its development laws.In this work,a two-dimensional transient fluid calculation model of the plasma jet process of the gas gap switch is established based on the renormalization-group k-εturbulence equation.The results show that the characteristic parameters and morphological evolution of the plasma jet are basically consistent with the experimental results,which verifies the accuracy of the simulation model calculation.The plasma jet is a long strip with an initial velocity of 1.0 km·s-1and develops in both axial and radial directions.The jet velocity fluctuates significantly with axial height.As the plasma jet enters the main gap,the pressure inside the trigger cavity drops by80%,resulting in a rapid drop in the jet velocity.When the plasma jet head interacts with the atmosphere,the two-phase fluid compresses each other,generating a forward-propelled pressure wave.The plasma jet heads flow at high velocity,a negative pressure zone is formed in the middle part of the jet,and the pressure peak decreases gradually with height.As the value of the inlet pressure increases,the characteristic parameters of the plasma jet increase.The entrainment phenomenon is evident,which leads to an increase in the pressure imbalance of the atmospheric gas medium,leading to a significant Coanda effect.Compared with air,the characteristic parameters of a plasma jet in SF6are lower,and the morphological evolution is significantly suppressed.The results of this study can provide some insight into the mechanism of action of the switch jet plasma development process.
基金supported by the State Grid Corporation Science and Technology Project(No.JL71-15-039)
文摘Previous studies have proposed higher requirements for the transient characteristics of a DC transformer used in a flexible high-voltage direct current(HVDC) system to achieve faster sampling speed and meet wider bandwidth requirements of the control and protection signal, and to eventually suppress the large transient fault current. In this study, a transient characteristics verification method is proposed for transient characteristics verification of a DC transformer used in a flexible HVDC system based on resampling technology and LabVIEW measurement technology after analyzing the key technology for transient characteristics verification of a DC transformer. A laboratory experiment for the transient characteristics of a full-fiber electronic DC transformer is conducted, and experimental results show that such verification method can be employed for frequency response and step response verification of a DC transformer at 10% of the rated voltage and current, and can eventually improve the screening of a DC transformer.
基金supported by the State Grid Science and Technology Project (GEIRI-DL-71-17-002)
文摘This paper introduces the implementation and data analysis associated with a state-wide power quality monitoring and analysis system in China. Corporation specifications on power quality monitors as well as on communication protocols are formulated for data transmission. Big data platform and related technologies are utilized for data storage and computation. Compliance verification analysis and a power quality performance assessment are conducted, and a visualization tool for result presentation is finally presented.
基金supported by the Tsinghua University 2021 Doctoral Summer Projectsupported by the National Key R&D Program of China (No. 2018YFE0301102)National Natural Science Foundation of China (Nos. 11875020 and 11875023)。
文摘The plasma optical boundary reconstruction technique based on Hommen's theory is promising for future tokamaks with high parameters. In this work, we conduct detailed analysis and simulation verification to estimate the ‘logic loophole' of this technique. The finite-width effect and unpredictable errors reduce the technique's reliability, which leads to this loophole. Based on imaging theory, the photos of a virtual camera are simulated by integrating the assumed luminous intensity of plasma. Based on Hommen's theory, the plasma optical boundary is reconstructed from the photos. Comparing the reconstructed boundary with the one assumed, the logic loophole and its two effects are quantitatively estimated. The finite-width effect is related to the equivalent thickness of the luminous layer, which is generally about 2-4 cm but sometimes larger. The level of unpredictable errors is around 0.65 cm. The technique based on Hommen's theory is generally reliable, but finite-width effect and unpredictable errors have to be taken into consideration in some scenarios. The parameters of HL-2M are applied in this work.
基金The national natural science foundation(61273290,61373147)Xiamen Scientific Plan Project(2014S0048,3502Z20123037)+1 种基金Fujian Scientific Plan Project(2013HZ0004-1)FuJian provincial education office A-class project(-JA13238)
文摘Many websites use verification codes to prevent users from using the machine automatically to register,login,malicious vote or irrigate but it brought great burden to the enterprises involved in internet marketing as entering the verification code manually.Improving the verification code security system needs the identification method as the corresponding testing system.We propose an anisotropic heat kernel equation group which can generate a heat source scale space during the kernel evolution based on infinite heat source axiom,design a multi-step anisotropic verification code identification algorithm which includes core procedure of building anisotropic heat kernel,settingwave energy information parameters,combing outverification codccharacters and corresponding peripheral procedure of gray scaling,binarizing,denoising,normalizing,segmenting and identifying,give out the detail criterion and parameter set.Actual test show the anisotropic heat kernel identification algorithm can be used on many kinds of verification code including text characters,mathematical,Chinese,voice,3D,programming,video,advertising,it has a higher rate of 25%and 50%than neural network and context matching algorithm separately for Yahoo site,49%and 60%for Captcha site,20%and 52%for Baidu site,60%and 65%for 3DTakers site,40%,and 51%.for MDP site.
基金Supported by the National Natural Science Foundation of China under Grant Nos 51301004 and U1330110the Guangdong Innovative and Entrepreneurial Research Team Program under Grant No 2013N080+1 种基金the Shenzhen Science and Technology Research Grant under Grant Nos JCYJ20140903102215536 and JCYJ20150828093127698the City University of Hong Kong Applied Research Grant under Grant No 9667104
文摘A non-sputtering discharge is utilized to verify the effect of replacement of gas ions by metallic ions and consequent decrease in the secondary electron emission coefficient in the discharge current curves in high-power impulse magnetron sputtering (HiPIMS). In the non-sputtering discharge involving hydrogen, replacement of ions is avoided while the rarefaction still contributes. The initial peak and ensuing decay disappear and all the discharge current curves show a similar feature as the HiPIMS discharge of materials with low sputtering yields such as carbon. The results demonstrate the key effect of ion replacement during sputtering.
文摘The study of vehicular ad-hoc networks(VANETs)has received significant attention among academia;even so,its security and privacy still become a central issue that is wide-open to discuss.The authentication schemes deployed in VANETs have a substantial impact on its security and privacy.Many researchers have proposed a variety of schemes related to the information verification and efficiency improvement in VANETs.In recent years,many papers have proposed identity-based batch verification(IBV)schemes in regard to diminishing overhead in the message verification process in VANETs.This survey begins with providing background information about VANETs and clarifying its security and privacy,as well as performance requirements that must be satisfied.After presenting an outlook of some relevant surveys of VANETs,a brief review of some IBV schemes published in recent years is conferred.The detailed approach of each scheme,with a comprehensive comparison between them,has been provided afterward.Finally,we summarize those recent studies and possible future improvements.
文摘Ensuring the correctness of answers to substring queries has not been a concern for consumers working within the traditional confines of their own organisational infrastructure. This is due to the fact that organisations generally trust their handling of their own data hosted on their own servers and networks. With cloud computing however, where both data and processing are delegated to unknown servers, guarantees of the correctness of queries need to be available. The verification of the results of substring searches has not been given much focus to date within the wider scope of data and query, verification. We present a verification scheme for existential substring searc, hes on text files, which is the first of its kind to satisfy the desired properties of authenticity, completeness, and freshness. The scheme is based on suffix arrays, Merkle hash trees and cryptographic hashes to provide strong guarantees of correctness for the consumer, even in fully untrusted environments. We provide a description of our scheme, along with the results of experiments conducted on a fully-working prototype.
基金supported by the National Natural Science Foundation of China(No.6127249261572521)+1 种基金Natural Science Foundation of Shaanxi Provence(No.2013JM8012)Fundamental Research Project of CAPF(No.WJY201520)
文摘The trustworthiness of virtual machines is a big security issue in cloud computing. In this paper, we aimed at designing a practical trustworthiness mechanism in virtual environment. With the assist of a third certificate agent, the cloud user generates a trust base and extends it to its VMs. For each service running on the VM, a hash value is generated from all the necessary modules, and these hash values are organized and maintained with a specially designed hash tree whose root is extended from the user's trust base. Before the VM loads a service, the hash tree is verified from the coordinated hash value to check the trustworthiness of the service.
基金Supported by the National Basic Research Program of China under Grant No 2014CB340102
文摘To overcome the shortcomings of the traditional passive ranging technology based on image, such as poor ranging accuracy, low reliability and complex system, a new visual passive ranging method based on re-entrant coaxial optical path is presented. The target image is obtained using double cameras with coaxial optical path. Since there is imaging optical path difference between the cameras, the images are different. In comparison of the image differences, the target range could be reversed. The principle of the ranging method and the ranging model are described. The relationship among parameters in the ranging process is analyzed quantitatively. Meanwhile,the system composition and technical realization scheme are also presented. Also, the principle of the method is verified by the equivalent experiment. The experimental results show that the design scheme is correct and feasible with good robustness. Generally, the ranging error is less than 10% with good convergence. The optical path is designed in a re-entrant mode to reduce the volume and weight of the system. Through the coaxial design,the visual passive range of the targets with any posture can be obtained in real time. The system can be widely used in electro-optical countermeasure and concealed photoelectric detection.