The high cost and low efficiency of full-scale vehicle experiments and numerical simulations limit the efficient development of armored vehicle occupant protection systems.The floor-occupant-seat local simulation mode...The high cost and low efficiency of full-scale vehicle experiments and numerical simulations limit the efficient development of armored vehicle occupant protection systems.The floor-occupant-seat local simulation model provides an alternative solution for quickly evaluating the performance of occupant protection systems.However,the error and rationality of the loading of the thin-walled floor in the local model cannot be ignored.This study proposed an equivalent loading method for the local model,which includes two parts:the dimensionality reduction method for acceleration matrix and the joint optimization framework for equivalent node coordinates.In the dimensionality reduction method,the dimension of the acceleration matrix was reduced based on the improved kernel principal component analysis(KPCA),and a dynamic variable bandwidth was introduced to address the limitation of failing to effectively measure the similarity between acceleration data in conventional KPCA.In addition,a least squares problem with forced displacement constraints was constructed to solve the correction matrix,thereby achieving the scale restoration process of the principal component acceleration matrix.The joint optimization framework for coordinates consists of the error assessment of response time histories(EARTH)and Bayesian optimization.In this framework,the local loading error of the equivalent acceleration matrix is taken as the Bayesian optimization objective,which is quantified and scored by EARTH.The expected improvement acquisition function was used to select the new set of the equivalent acceleration node coordinates for the self-updating optimization of the observation dataset and Gaussian process surrogate model.We reduced the dimension of the acceleration matrix from 2256 to 7,while retaining 91%of the information features.The comprehensive error score of occupant's lower limb response in the local model increased from 58.5%to 80.4%.The proposed equivalent loading method provides a solution for the rapid and reliable development of occupant protection systems.展开更多
As a crucial process in the coordinated strikes of unmanned aerial vehicles(UAVs), weapon-target assignment is vital for optimizing the allocation of available weapons and effectively exploiting the capabilities of UA...As a crucial process in the coordinated strikes of unmanned aerial vehicles(UAVs), weapon-target assignment is vital for optimizing the allocation of available weapons and effectively exploiting the capabilities of UAVs. Existing weapon-target assignment methods primarily focus on macro cluster constraints while neglecting individual strategy updates. This paper proposes a novel weapon-target assignment method for UAVs based on the multi-strategy threshold public goods game(PGG). By analyzing the concept mapping between weapon-target assignment for UAVs and multi-strategy threshold PGG, a weapon-target assignment model for UAVs based on the multi-strategy threshold PGG is established, which is adaptively complemented by the diverse cooperation-defection strategy library and the utility function based on the threshold mechanism. Additionally, a multi-chain Markov is formulated to quantitatively describe the stochastic evolutionary dynamics, whose evolutionary stable distribution is theoretically derived through the development of a strategy update rule based on preference-based aspiration dynamic. Numerical simulation results validate the feasibility and effectiveness of the proposed method, and the impacts of selection intensity, preference degree and threshold on the evolutionary stable distribution are analyzed. Comparative simulations show that the proposed method outperforms GWO, DE, and NSGA-II, achieving 17.18% higher expected utility than NSGA-II and reducing evolutionary stable times by 25% in large-scale scenario.展开更多
This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hype...This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hypersonic vehicles.In order to increase the control amount,this online control legislation makes use of model predictive control(MPC)that is based on the concept of iterative learning control(ILC).By using offline data to decrease the linearized model’s faults,the strategy may effectively increase the robustness of the control system and guarantee that disturbances can be suppressed.An adaptive fault observer is created based on the suggested ILMPC approach in order to enhance overall fault tolerance by estimating and compensating for actuator disturbance and fault degree.During the derivation process,a linearized model of longitudinal dynamics is established.The suggested ILMPC approach is likely to be used in the design of hypersonic vehicle control systems since numerical simulations have demonstrated that it can decrease tracking error and speed up convergence when compared to the offline controller.展开更多
The cross-domain capabilities of aerial-aquatic vehicles(AAVs)hold significant potential for future airsea integrated combat operations.However,the failure rate of AAVs is higher than that of unmanned systems operatin...The cross-domain capabilities of aerial-aquatic vehicles(AAVs)hold significant potential for future airsea integrated combat operations.However,the failure rate of AAVs is higher than that of unmanned systems operating in a single medium.To ensure the reliable and stable completion of tasks by AAVs,this paper proposes a tiltable quadcopter AAV to mitigate the potential issue of rotor failure,which can lead to high-speed spinning or damage during cross-media transitions.Experimental validation demonstrates that this tiltable quadcopter AAV can transform into a dual-rotor or triple-rotor configuration after losing one or two rotors,allowing it to perform cross-domain movements with enhanced stability and maintain task completion.This enhancement significantly improves its fault tolerance and task reliability.展开更多
This paper presents an investigation on the target-guided coordinated control(TACC)of unmanned surface vehicles(USVs).In the scenario of tracking non-cooperative targets,the status information of the target can only b...This paper presents an investigation on the target-guided coordinated control(TACC)of unmanned surface vehicles(USVs).In the scenario of tracking non-cooperative targets,the status information of the target can only be obtained by some USVs.In order to achieve semi-encirclement tracking of noncooperative targets under maritime security conditions,a fixed-time tracking control method based on dynamic surface control(DSC)is proposed in this paper.Firstly,a novel TACC architecture with decoupled kinematic control law and decoupled kinetic control law was designed to reduce the complexity of control system design.Secondly,the proposed DSC-based target-guided kinematic control law including tracking points pre-allocation strategy and sigmoid artificial potential functions(SigAPFs)can avoid collisions during tracking process and optimize kinematic control output.Finally,a fixed-time TACC system was proposed to achieve fast convergence of kinematic and kinetics errors.The effectiveness of the proposed TACC approach in improving target tracking safety and reducing control output chattering was verified by simulation comparison results.展开更多
Multi-axle heavy-duty vehicles(MHVs)are essential for military equipment transport due to their safety and stability.However,braking dynamic responses between MHVs and pavement systems still remain underexplored,parti...Multi-axle heavy-duty vehicles(MHVs)are essential for military equipment transport due to their safety and stability.However,braking dynamic responses between MHVs and pavement systems still remain underexplored,particularly regarding their complex load transfer mechanisms.This paper develops an enhanced model of a multi-axle heavy-duty vehicle(MHV)coupled with the uneven and flexible pavement.An advanced coupling iterative method is proposed to solve the highly dimensional equations of the MHV-pavement coupled system.The proposed method was validated through experimental tests,with characteristic parameters of vertical accelerations showing relative errors between 0.42%and 11.80%.The coupling effect and influence mechanism of the braking process are investigated by characteristic parameters of the dynamic responses.Additionally,the influences of braking conditions and pavement parameters are analyzed in time and frequency domains in order to reveal the vibration mechanisms of the coupled system.Moreover,this study establishes a theoretical foundation for monitoring pavement health via vehicle-mounted acceleration signals,which is necessary in military transportation.展开更多
Trans-medium flight vehicles can combine high aerial maneuverability and underwater concealment ability,which have attracted much attention recently.As the most crucial procedure,the trajectory design generally determ...Trans-medium flight vehicles can combine high aerial maneuverability and underwater concealment ability,which have attracted much attention recently.As the most crucial procedure,the trajectory design generally determines the trans-medium flight vehicle performance.To quantitatively analyze the flight vehicle performance,an entire aerial-aquatic trajectory model is developed in this paper.Different from modeling a trajectory purely for the water entry process,the constructed entire trajectory model has integrated aerial,water entry,and underwater trajectories together,which can consider the influence of the connected trajectories.As for the aerial and underwater trajectories,explicit dynamic models are established to obtain the trajectory parameters.Due to the complicated fluid force during high-velocity water entry,a computational fluid dynamics model is investigated to analyze this phase.The compu-tational domain size is adaptively refined according to the final aerial trajectory state,where the redundant computational domain is removed.An entire trajectory optimization problem is then formulated to maximize the total flight range via tuning the joint states of different trajectories.Simultaneously,several constraints,i.e.,the max impact load,trajectory height,etc.,are involved in the optimization problem.Rather than directly optimizing by a heuristic algorithm,a multi-surrogate cooperative sampling-based optimization method is proposed to alleviate the computational complexity of the entire trajectory optimization problem.In this method,various surrogates coopera-tively generate infill sample points,thereby preventing the poor approximation.After optimization,the total flight range can be improved by 20%,while all the constraints are satisfied.The result demonstrates the effectiveness and practicability of the developed model and optimization framework.展开更多
For the longitudinal midcourse guidance problem of a cruise-glide integrated hypersonic vehicle(CGHV),an analytical method based on optimal control theory is proposed.This method constructs a guidance dynamics model f...For the longitudinal midcourse guidance problem of a cruise-glide integrated hypersonic vehicle(CGHV),an analytical method based on optimal control theory is proposed.This method constructs a guidance dynamics model for such vehicles,using aerodynamic load as the control variable,and introduces a framework for solving the guidance laws.This framework unifies the design process of guidance laws for both the glide and cruise phases.By decomposing the longitudinal guidance task into position control and velocity control,and minimizing energy consumption as the objective function,the method provides an analytical solution for velocity control load through the calculation of costate variables.This approach requires only the current state and terminal state parameters to determine the guidance law solution.Furthermore,by transforming path constraints into aerodynamic load constraints and solving backwards to obtain the angle of attack,bank angle,and throttle setting,this method ensures a smooth transition from the glide phase to the cruise phase,guaranteeing the successful completion of the guidance task.Finally,the effectiveness and practicality of the proposed method are validated through case simulations and analysis.展开更多
The precise characterization of hypersonic glide vehicle(HGV) maneuver laws in complex flight scenarios still faces challenges. Non-stationary changes in flight state due to abrupt changes in maneuver modes place high...The precise characterization of hypersonic glide vehicle(HGV) maneuver laws in complex flight scenarios still faces challenges. Non-stationary changes in flight state due to abrupt changes in maneuver modes place high demands on the accuracy of modeling methods. To address this issue, a novel maneuver laws modeling and analysis method based on higher order multi-resolution dynamic mode decomposition(HMDMD) is proposed in this work. A joint time-space-frequency decomposition of the vehicle's state sequence in the complex flight scenario is achieved with the higher order Koopman assumption and standard multi-resolution dynamic mode decomposition, and an approximate dynamic model is established. The maneuver laws can be reconstructed and analyzed with extracted multi-scale spatiotemporal modes with clear physical meaning. Based on the dynamic model of HGV, two flight scenarios are established with constant angle of attack and complex maneuver laws, respectively. Simulation results demonstrate that the maneuver laws obtained using the HMDMD method are highly consistent with those derived from the real dynamic model, the modeling accuracy is better than other common modeling methods, and the method has strong interpretability.展开更多
This paper concentrates on addressing the hypersonic glide vehicle(HGV)tracking problem considering the high maneuverability and non-stationary heavy-tailed measurement noise without prior statistics in complicated fl...This paper concentrates on addressing the hypersonic glide vehicle(HGV)tracking problem considering the high maneuverability and non-stationary heavy-tailed measurement noise without prior statistics in complicated flight environments.Since the interacting multiple model(IMM)filtering is famous with its ability to cover the movement property of motion models,the problem is formulated as modeling the non-stationary heavy-tailed measurement noise without any prior statistics in the IMM framework.Firstly,without any prior statistics,the Gaussian-inverse Wishart distribution is embedded in the improved Pearson type-VII(PTV)distribution,which can adaptively adjust the parameters to model the non-stationary heavytailed measurement noise.Besides,degree of freedom(DOF)parameters are surrogated by the maximization of evidence lower bound(ELBO)in the variational Bayesian optimization framework instead of fixed value to handle uncertain non-Gaussian degrees.Then,this paper analytically derives fusion forms based on the maximum Versoria fusion criterion instead of the moment matching approach,which can provide a precise approximation for the PTV mixture distribution in the mixing and output steps combined with the weight Kullback-Leibler average theory.Simulation results demonstrate the superiority and robustness of the proposed algorithm in typical HGVs tracking when the measurement noise without priori statistics is non-stationary.展开更多
The maneuverability and stealth of aerial-aquatic vehicles(AAVs)is of significant importance for future integrated air-sea combat missions.To improve the maneuverability and stealth of AAVs near the water surface,this...The maneuverability and stealth of aerial-aquatic vehicles(AAVs)is of significant importance for future integrated air-sea combat missions.To improve the maneuverability and stealth of AAVs near the water surface,this paper proposed a high-maneuverability skipping motion strategy for the tandem twin-rotor AAV,inspired by the motion behavior of the flying fish to avoid aquatic and aerial predators near the water surface.The novel tandem twin-rotor AAV was employed as the research subject and a strategybased ADRC control method for validation,comparing it with a strategy-based PID control method.The results indicate that both control methods enable the designed AAV to achieve high stealth and maneuverability near the water surface with robust control stability.The strategy-based ADRC control method exhibits a certain advantage in controlling height,pitch angle,and reducing impact force.This motion strategy will offer an inspiring approach for the practical application of AAVs to some extent.展开更多
The connected and automated vehicles(CAVs)technologies provide more information to drivers in the car-following(CF)process.Unlike the human-driven vehicles(HVs),which only considers information in front,the CAVs circu...The connected and automated vehicles(CAVs)technologies provide more information to drivers in the car-following(CF)process.Unlike the human-driven vehicles(HVs),which only considers information in front,the CAVs circumstance allows them to obtain information in front and behind,enhancing vehicles perception ability.This paper proposes an intelligent back-looking distance driver model(IBDM)considering the desired distance of the following vehicle in homogeneous CAVs environment.Based on intelligent driver model(IDM),the IBDM integrates behind information of vehicles as a control term.The stability condition against a small perturbation is analyzed using linear stability theory in the homogeneous traffic flow.To validate the theoretical analysis,simulations are carried out on a single lane under the open boundary condition,and compared with the IDM not considering the following vehicle and the extended IDM considering the information of vehicle preceding and next preceding.Six scenarios are designed to evaluate the results under different disturbance strength,disturbance location,and initial platoon space distance.The results reveal that the IBDM has an advantage over IDM and the extended IDM in control of CAVs car-following process in maintaining string stability,and the stability improves by increasing the proportion of the new item.展开更多
The problem of simultaneous scheduling of machines and vehicles in flexible manufacturing system (FMS) was addressed.A spreadsheet based genetic algorithm (GA) approach was presented to solve the problem.A domain inde...The problem of simultaneous scheduling of machines and vehicles in flexible manufacturing system (FMS) was addressed.A spreadsheet based genetic algorithm (GA) approach was presented to solve the problem.A domain independent general purpose GA was used,which was an add-in to the spreadsheet software.An adaptation of the propritary GA software was demonstrated to the problem of minimizing the total completion time or makespan for simultaneous scheduling of machines and vehicles in flexible manufacturing systems.Computational results are presented for a benchmark with 82 test problems,which have been constructed by other researchers.The achieved results are comparable to the previous approaches.The proposed approach can be also applied to other problems or objective functions without changing the GA routine or the spreadsheet model.展开更多
Unmanned combat air vehicles(UCAVs) mission planning is a fairly complicated global optimum problem. Military attack missions often employ a fleet of UCAVs equipped with weapons to attack a set of known targets. A UCA...Unmanned combat air vehicles(UCAVs) mission planning is a fairly complicated global optimum problem. Military attack missions often employ a fleet of UCAVs equipped with weapons to attack a set of known targets. A UCAV can carry different weapons to accomplish different combat missions. Choice of different weapons will have different effects on the final combat effectiveness. This work presents a mixed integer programming model for simultaneous weapon configuration and route planning of UCAVs, which solves the problem optimally using the IBM ILOG CPLEX optimizer for simple missions. This paper develops a heuristic algorithm to handle the medium-scale and large-scale problems. The experiments demonstrate the performance of the heuristic algorithm in solving the medium scale and large scale problems. Moreover, we give suggestions on how to select the most appropriate algorithm to solve different scale problems.展开更多
Many vehicle platoons are interrupted while traveling on roads,especially at urban signalized intersections.One reason for such interruptions is the inability to exchange real-time information between traditional huma...Many vehicle platoons are interrupted while traveling on roads,especially at urban signalized intersections.One reason for such interruptions is the inability to exchange real-time information between traditional human-driven vehicles and intersection infrastructure.Thus,this paper develops a Markov chain-based model to recognize platoons.A simulation experiment is performed in Vissim based on field data extracted from video recordings to prove the model’s applicability.The videos,recorded with a high-definition camera,contain field driving data from three Tesla vehicles,which can achieve Level 2 autonomous driving.The simulation results show that the recognition rate exceeds 80%when the connected and autonomous vehicle penetration rate is higher than 0.7.Whether a vehicle is upstream or downstream of an intersection also affects the performance of platoon recognition.The platoon recognition model developed in this paper can be used as a signal control input at intersections to reduce the unnecessary interruption of vehicle platoons and improve traffic efficiency.展开更多
This paper addresses the problem of three-dimensional trajectory tracking control for underactuated autonomous underwater vehicles in the presence of parametric uncertainties,environmental disturbances and input satur...This paper addresses the problem of three-dimensional trajectory tracking control for underactuated autonomous underwater vehicles in the presence of parametric uncertainties,environmental disturbances and input saturation.First,a virtual guidance control strategy is established on the basis of tracking error kinematics,which resolves the overall control system into two cascade subsystems.Then,a first-order sliding mode differentiator is introduced in the derivation to avoid tedious analytic calculation,and a Gaussian error function-based continuous differentiable symmetric saturation model is explored to tackle the issue of input saturation.Combined with backstepping design techniques,the neural network control method and an adaptive control approach are used to estimate composite items of the unknown uncertainty and approximation errors.Meanwhile,Lyapunov-based stability analysis guarantees that control error signals of the closed-loop system are uniformly ultimately bounded.Finally,simulation studies are conducted for the trajectory tracking of a moving target and a spiral line to validate the effectiveness of the proposed controller.展开更多
To solve the problem of multi-target hunting by an unmanned surface vehicle(USV)fleet,a hunting algorithm based on multi-agent reinforcement learning is proposed.Firstly,the hunting environment and kinematic model wit...To solve the problem of multi-target hunting by an unmanned surface vehicle(USV)fleet,a hunting algorithm based on multi-agent reinforcement learning is proposed.Firstly,the hunting environment and kinematic model without boundary constraints are built,and the criteria for successful target capture are given.Then,the cooperative hunting problem of a USV fleet is modeled as a decentralized partially observable Markov decision process(Dec-POMDP),and a distributed partially observable multitarget hunting Proximal Policy Optimization(DPOMH-PPO)algorithm applicable to USVs is proposed.In addition,an observation model,a reward function and the action space applicable to multi-target hunting tasks are designed.To deal with the dynamic change of observational feature dimension input by partially observable systems,a feature embedding block is proposed.By combining the two feature compression methods of column-wise max pooling(CMP)and column-wise average-pooling(CAP),observational feature encoding is established.Finally,the centralized training and decentralized execution framework is adopted to complete the training of hunting strategy.Each USV in the fleet shares the same policy and perform actions independently.Simulation experiments have verified the effectiveness of the DPOMH-PPO algorithm in the test scenarios with different numbers of USVs.Moreover,the advantages of the proposed model are comprehensively analyzed from the aspects of algorithm performance,migration effect in task scenarios and self-organization capability after being damaged,the potential deployment and application of DPOMH-PPO in the real environment is verified.展开更多
Autonomous vehicles are essential for mobility in big cities,just like how elevators make high-rise buildings livable.While significant progress has been achieved over the last 15 years,there are still several remaini...Autonomous vehicles are essential for mobility in big cities,just like how elevators make high-rise buildings livable.While significant progress has been achieved over the last 15 years,there are still several remaining challenges,namely:cost,robust performance,and trust.To address these challenges,this paper discusses research at Mcity.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.52272437 and 52272370)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX24_0635)。
文摘The high cost and low efficiency of full-scale vehicle experiments and numerical simulations limit the efficient development of armored vehicle occupant protection systems.The floor-occupant-seat local simulation model provides an alternative solution for quickly evaluating the performance of occupant protection systems.However,the error and rationality of the loading of the thin-walled floor in the local model cannot be ignored.This study proposed an equivalent loading method for the local model,which includes two parts:the dimensionality reduction method for acceleration matrix and the joint optimization framework for equivalent node coordinates.In the dimensionality reduction method,the dimension of the acceleration matrix was reduced based on the improved kernel principal component analysis(KPCA),and a dynamic variable bandwidth was introduced to address the limitation of failing to effectively measure the similarity between acceleration data in conventional KPCA.In addition,a least squares problem with forced displacement constraints was constructed to solve the correction matrix,thereby achieving the scale restoration process of the principal component acceleration matrix.The joint optimization framework for coordinates consists of the error assessment of response time histories(EARTH)and Bayesian optimization.In this framework,the local loading error of the equivalent acceleration matrix is taken as the Bayesian optimization objective,which is quantified and scored by EARTH.The expected improvement acquisition function was used to select the new set of the equivalent acceleration node coordinates for the self-updating optimization of the observation dataset and Gaussian process surrogate model.We reduced the dimension of the acceleration matrix from 2256 to 7,while retaining 91%of the information features.The comprehensive error score of occupant's lower limb response in the local model increased from 58.5%to 80.4%.The proposed equivalent loading method provides a solution for the rapid and reliable development of occupant protection systems.
基金supported by the National Natural Science Foundation of China (No. 62073267)。
文摘As a crucial process in the coordinated strikes of unmanned aerial vehicles(UAVs), weapon-target assignment is vital for optimizing the allocation of available weapons and effectively exploiting the capabilities of UAVs. Existing weapon-target assignment methods primarily focus on macro cluster constraints while neglecting individual strategy updates. This paper proposes a novel weapon-target assignment method for UAVs based on the multi-strategy threshold public goods game(PGG). By analyzing the concept mapping between weapon-target assignment for UAVs and multi-strategy threshold PGG, a weapon-target assignment model for UAVs based on the multi-strategy threshold PGG is established, which is adaptively complemented by the diverse cooperation-defection strategy library and the utility function based on the threshold mechanism. Additionally, a multi-chain Markov is formulated to quantitatively describe the stochastic evolutionary dynamics, whose evolutionary stable distribution is theoretically derived through the development of a strategy update rule based on preference-based aspiration dynamic. Numerical simulation results validate the feasibility and effectiveness of the proposed method, and the impacts of selection intensity, preference degree and threshold on the evolutionary stable distribution are analyzed. Comparative simulations show that the proposed method outperforms GWO, DE, and NSGA-II, achieving 17.18% higher expected utility than NSGA-II and reducing evolutionary stable times by 25% in large-scale scenario.
基金supported by the National Natural Science Foundation of China(12072090).
文摘This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hypersonic vehicles.In order to increase the control amount,this online control legislation makes use of model predictive control(MPC)that is based on the concept of iterative learning control(ILC).By using offline data to decrease the linearized model’s faults,the strategy may effectively increase the robustness of the control system and guarantee that disturbances can be suppressed.An adaptive fault observer is created based on the suggested ILMPC approach in order to enhance overall fault tolerance by estimating and compensating for actuator disturbance and fault degree.During the derivation process,a linearized model of longitudinal dynamics is established.The suggested ILMPC approach is likely to be used in the design of hypersonic vehicle control systems since numerical simulations have demonstrated that it can decrease tracking error and speed up convergence when compared to the offline controller.
基金supported by Southern Marine Science and Engineering Guangdong Laboratory Grant No.SML2023SP229。
文摘The cross-domain capabilities of aerial-aquatic vehicles(AAVs)hold significant potential for future airsea integrated combat operations.However,the failure rate of AAVs is higher than that of unmanned systems operating in a single medium.To ensure the reliable and stable completion of tasks by AAVs,this paper proposes a tiltable quadcopter AAV to mitigate the potential issue of rotor failure,which can lead to high-speed spinning or damage during cross-media transitions.Experimental validation demonstrates that this tiltable quadcopter AAV can transform into a dual-rotor or triple-rotor configuration after losing one or two rotors,allowing it to perform cross-domain movements with enhanced stability and maintain task completion.This enhancement significantly improves its fault tolerance and task reliability.
文摘This paper presents an investigation on the target-guided coordinated control(TACC)of unmanned surface vehicles(USVs).In the scenario of tracking non-cooperative targets,the status information of the target can only be obtained by some USVs.In order to achieve semi-encirclement tracking of noncooperative targets under maritime security conditions,a fixed-time tracking control method based on dynamic surface control(DSC)is proposed in this paper.Firstly,a novel TACC architecture with decoupled kinematic control law and decoupled kinetic control law was designed to reduce the complexity of control system design.Secondly,the proposed DSC-based target-guided kinematic control law including tracking points pre-allocation strategy and sigmoid artificial potential functions(SigAPFs)can avoid collisions during tracking process and optimize kinematic control output.Finally,a fixed-time TACC system was proposed to achieve fast convergence of kinematic and kinetics errors.The effectiveness of the proposed TACC approach in improving target tracking safety and reducing control output chattering was verified by simulation comparison results.
基金National Defense Basic Scientific Research Program of China(Grant No.JCKY2021602B030).
文摘Multi-axle heavy-duty vehicles(MHVs)are essential for military equipment transport due to their safety and stability.However,braking dynamic responses between MHVs and pavement systems still remain underexplored,particularly regarding their complex load transfer mechanisms.This paper develops an enhanced model of a multi-axle heavy-duty vehicle(MHV)coupled with the uneven and flexible pavement.An advanced coupling iterative method is proposed to solve the highly dimensional equations of the MHV-pavement coupled system.The proposed method was validated through experimental tests,with characteristic parameters of vertical accelerations showing relative errors between 0.42%and 11.80%.The coupling effect and influence mechanism of the braking process are investigated by characteristic parameters of the dynamic responses.Additionally,the influences of braking conditions and pavement parameters are analyzed in time and frequency domains in order to reveal the vibration mechanisms of the coupled system.Moreover,this study establishes a theoretical foundation for monitoring pavement health via vehicle-mounted acceleration signals,which is necessary in military transportation.
基金supported by the National Natural Science Foundation of China(Grant Nos.52425211,52272360,and 52472394)Chongqing Natural Science Foundation(CSTB2023NSCQ-MSX0300)。
文摘Trans-medium flight vehicles can combine high aerial maneuverability and underwater concealment ability,which have attracted much attention recently.As the most crucial procedure,the trajectory design generally determines the trans-medium flight vehicle performance.To quantitatively analyze the flight vehicle performance,an entire aerial-aquatic trajectory model is developed in this paper.Different from modeling a trajectory purely for the water entry process,the constructed entire trajectory model has integrated aerial,water entry,and underwater trajectories together,which can consider the influence of the connected trajectories.As for the aerial and underwater trajectories,explicit dynamic models are established to obtain the trajectory parameters.Due to the complicated fluid force during high-velocity water entry,a computational fluid dynamics model is investigated to analyze this phase.The compu-tational domain size is adaptively refined according to the final aerial trajectory state,where the redundant computational domain is removed.An entire trajectory optimization problem is then formulated to maximize the total flight range via tuning the joint states of different trajectories.Simultaneously,several constraints,i.e.,the max impact load,trajectory height,etc.,are involved in the optimization problem.Rather than directly optimizing by a heuristic algorithm,a multi-surrogate cooperative sampling-based optimization method is proposed to alleviate the computational complexity of the entire trajectory optimization problem.In this method,various surrogates coopera-tively generate infill sample points,thereby preventing the poor approximation.After optimization,the total flight range can be improved by 20%,while all the constraints are satisfied.The result demonstrates the effectiveness and practicability of the developed model and optimization framework.
基金supported by the National Natural Science Foundation of China(Grant Nos.62473374,62403487 and U2441243).
文摘For the longitudinal midcourse guidance problem of a cruise-glide integrated hypersonic vehicle(CGHV),an analytical method based on optimal control theory is proposed.This method constructs a guidance dynamics model for such vehicles,using aerodynamic load as the control variable,and introduces a framework for solving the guidance laws.This framework unifies the design process of guidance laws for both the glide and cruise phases.By decomposing the longitudinal guidance task into position control and velocity control,and minimizing energy consumption as the objective function,the method provides an analytical solution for velocity control load through the calculation of costate variables.This approach requires only the current state and terminal state parameters to determine the guidance law solution.Furthermore,by transforming path constraints into aerodynamic load constraints and solving backwards to obtain the angle of attack,bank angle,and throttle setting,this method ensures a smooth transition from the glide phase to the cruise phase,guaranteeing the successful completion of the guidance task.Finally,the effectiveness and practicality of the proposed method are validated through case simulations and analysis.
基金supported by the National Natural Science Foundation of China (Grant No. 12302056)the Postdoctoral Fellowship Program of CPSF:GZC20233445。
文摘The precise characterization of hypersonic glide vehicle(HGV) maneuver laws in complex flight scenarios still faces challenges. Non-stationary changes in flight state due to abrupt changes in maneuver modes place high demands on the accuracy of modeling methods. To address this issue, a novel maneuver laws modeling and analysis method based on higher order multi-resolution dynamic mode decomposition(HMDMD) is proposed in this work. A joint time-space-frequency decomposition of the vehicle's state sequence in the complex flight scenario is achieved with the higher order Koopman assumption and standard multi-resolution dynamic mode decomposition, and an approximate dynamic model is established. The maneuver laws can be reconstructed and analyzed with extracted multi-scale spatiotemporal modes with clear physical meaning. Based on the dynamic model of HGV, two flight scenarios are established with constant angle of attack and complex maneuver laws, respectively. Simulation results demonstrate that the maneuver laws obtained using the HMDMD method are highly consistent with those derived from the real dynamic model, the modeling accuracy is better than other common modeling methods, and the method has strong interpretability.
基金supported by the National Natural Science Foundation of China(12072090).
文摘This paper concentrates on addressing the hypersonic glide vehicle(HGV)tracking problem considering the high maneuverability and non-stationary heavy-tailed measurement noise without prior statistics in complicated flight environments.Since the interacting multiple model(IMM)filtering is famous with its ability to cover the movement property of motion models,the problem is formulated as modeling the non-stationary heavy-tailed measurement noise without any prior statistics in the IMM framework.Firstly,without any prior statistics,the Gaussian-inverse Wishart distribution is embedded in the improved Pearson type-VII(PTV)distribution,which can adaptively adjust the parameters to model the non-stationary heavytailed measurement noise.Besides,degree of freedom(DOF)parameters are surrogated by the maximization of evidence lower bound(ELBO)in the variational Bayesian optimization framework instead of fixed value to handle uncertain non-Gaussian degrees.Then,this paper analytically derives fusion forms based on the maximum Versoria fusion criterion instead of the moment matching approach,which can provide a precise approximation for the PTV mixture distribution in the mixing and output steps combined with the weight Kullback-Leibler average theory.Simulation results demonstrate the superiority and robustness of the proposed algorithm in typical HGVs tracking when the measurement noise without priori statistics is non-stationary.
基金supported by Southern Marine Science and Guangdong Laboratory(Zhuhai)(Grant No.SML2023SP229)。
文摘The maneuverability and stealth of aerial-aquatic vehicles(AAVs)is of significant importance for future integrated air-sea combat missions.To improve the maneuverability and stealth of AAVs near the water surface,this paper proposed a high-maneuverability skipping motion strategy for the tandem twin-rotor AAV,inspired by the motion behavior of the flying fish to avoid aquatic and aerial predators near the water surface.The novel tandem twin-rotor AAV was employed as the research subject and a strategybased ADRC control method for validation,comparing it with a strategy-based PID control method.The results indicate that both control methods enable the designed AAV to achieve high stealth and maneuverability near the water surface with robust control stability.The strategy-based ADRC control method exhibits a certain advantage in controlling height,pitch angle,and reducing impact force.This motion strategy will offer an inspiring approach for the practical application of AAVs to some extent.
基金Project(2018YFB1600600)supported by the National Key Research and Development Program,ChinaProject(20YJAZH083)supported by the Ministry of Education,China+1 种基金Project(20YJAZH083)supported by the Humanities and Social Sciences,ChinaProject(51878161)supported by the National Natural Science Foundation of China。
文摘The connected and automated vehicles(CAVs)technologies provide more information to drivers in the car-following(CF)process.Unlike the human-driven vehicles(HVs),which only considers information in front,the CAVs circumstance allows them to obtain information in front and behind,enhancing vehicles perception ability.This paper proposes an intelligent back-looking distance driver model(IBDM)considering the desired distance of the following vehicle in homogeneous CAVs environment.Based on intelligent driver model(IDM),the IBDM integrates behind information of vehicles as a control term.The stability condition against a small perturbation is analyzed using linear stability theory in the homogeneous traffic flow.To validate the theoretical analysis,simulations are carried out on a single lane under the open boundary condition,and compared with the IDM not considering the following vehicle and the extended IDM considering the information of vehicle preceding and next preceding.Six scenarios are designed to evaluate the results under different disturbance strength,disturbance location,and initial platoon space distance.The results reveal that the IBDM has an advantage over IDM and the extended IDM in control of CAVs car-following process in maintaining string stability,and the stability improves by increasing the proportion of the new item.
文摘The problem of simultaneous scheduling of machines and vehicles in flexible manufacturing system (FMS) was addressed.A spreadsheet based genetic algorithm (GA) approach was presented to solve the problem.A domain independent general purpose GA was used,which was an add-in to the spreadsheet software.An adaptation of the propritary GA software was demonstrated to the problem of minimizing the total completion time or makespan for simultaneous scheduling of machines and vehicles in flexible manufacturing systems.Computational results are presented for a benchmark with 82 test problems,which have been constructed by other researchers.The achieved results are comparable to the previous approaches.The proposed approach can be also applied to other problems or objective functions without changing the GA routine or the spreadsheet model.
基金supported by the National Natural Science Foundation of China(7147117571471174)
文摘Unmanned combat air vehicles(UCAVs) mission planning is a fairly complicated global optimum problem. Military attack missions often employ a fleet of UCAVs equipped with weapons to attack a set of known targets. A UCAV can carry different weapons to accomplish different combat missions. Choice of different weapons will have different effects on the final combat effectiveness. This work presents a mixed integer programming model for simultaneous weapon configuration and route planning of UCAVs, which solves the problem optimally using the IBM ILOG CPLEX optimizer for simple missions. This paper develops a heuristic algorithm to handle the medium-scale and large-scale problems. The experiments demonstrate the performance of the heuristic algorithm in solving the medium scale and large scale problems. Moreover, we give suggestions on how to select the most appropriate algorithm to solve different scale problems.
基金Project(71871013)supported by the National Natural Science Foundation of China。
文摘Many vehicle platoons are interrupted while traveling on roads,especially at urban signalized intersections.One reason for such interruptions is the inability to exchange real-time information between traditional human-driven vehicles and intersection infrastructure.Thus,this paper develops a Markov chain-based model to recognize platoons.A simulation experiment is performed in Vissim based on field data extracted from video recordings to prove the model’s applicability.The videos,recorded with a high-definition camera,contain field driving data from three Tesla vehicles,which can achieve Level 2 autonomous driving.The simulation results show that the recognition rate exceeds 80%when the connected and autonomous vehicle penetration rate is higher than 0.7.Whether a vehicle is upstream or downstream of an intersection also affects the performance of platoon recognition.The platoon recognition model developed in this paper can be used as a signal control input at intersections to reduce the unnecessary interruption of vehicle platoons and improve traffic efficiency.
基金Project(51979116)supported by the National Natural Science Foundation of ChinaProject(2018KFYYXJJ012,2018JYCXJJ045)supported by the Fundamental Research Funds for the Central Universities,China+1 种基金Project(YT19201702)supported by the Innovation Foundation of Maritime Defense Technologies Innovation Center,ChinaProject supported by the HUST Interdisciplinary Innovation Team Project,China。
文摘This paper addresses the problem of three-dimensional trajectory tracking control for underactuated autonomous underwater vehicles in the presence of parametric uncertainties,environmental disturbances and input saturation.First,a virtual guidance control strategy is established on the basis of tracking error kinematics,which resolves the overall control system into two cascade subsystems.Then,a first-order sliding mode differentiator is introduced in the derivation to avoid tedious analytic calculation,and a Gaussian error function-based continuous differentiable symmetric saturation model is explored to tackle the issue of input saturation.Combined with backstepping design techniques,the neural network control method and an adaptive control approach are used to estimate composite items of the unknown uncertainty and approximation errors.Meanwhile,Lyapunov-based stability analysis guarantees that control error signals of the closed-loop system are uniformly ultimately bounded.Finally,simulation studies are conducted for the trajectory tracking of a moving target and a spiral line to validate the effectiveness of the proposed controller.
基金financial support from National Natural Science Foundation of China(Grant No.61601491)Natural Science Foundation of Hubei Province,China(Grant No.2018CFC865)Military Research Project of China(-Grant No.YJ2020B117)。
文摘To solve the problem of multi-target hunting by an unmanned surface vehicle(USV)fleet,a hunting algorithm based on multi-agent reinforcement learning is proposed.Firstly,the hunting environment and kinematic model without boundary constraints are built,and the criteria for successful target capture are given.Then,the cooperative hunting problem of a USV fleet is modeled as a decentralized partially observable Markov decision process(Dec-POMDP),and a distributed partially observable multitarget hunting Proximal Policy Optimization(DPOMH-PPO)algorithm applicable to USVs is proposed.In addition,an observation model,a reward function and the action space applicable to multi-target hunting tasks are designed.To deal with the dynamic change of observational feature dimension input by partially observable systems,a feature embedding block is proposed.By combining the two feature compression methods of column-wise max pooling(CMP)and column-wise average-pooling(CAP),observational feature encoding is established.Finally,the centralized training and decentralized execution framework is adopted to complete the training of hunting strategy.Each USV in the fleet shares the same policy and perform actions independently.Simulation experiments have verified the effectiveness of the DPOMH-PPO algorithm in the test scenarios with different numbers of USVs.Moreover,the advantages of the proposed model are comprehensively analyzed from the aspects of algorithm performance,migration effect in task scenarios and self-organization capability after being damaged,the potential deployment and application of DPOMH-PPO in the real environment is verified.
文摘Autonomous vehicles are essential for mobility in big cities,just like how elevators make high-rise buildings livable.While significant progress has been achieved over the last 15 years,there are still several remaining challenges,namely:cost,robust performance,and trust.To address these challenges,this paper discusses research at Mcity.