A theoretical model has been developed to investigate vertical dynamic interactions between railway vehicles and tracks. Wheel rail forces and dynamic responses of vehicle and track components can be simulated with...A theoretical model has been developed to investigate vertical dynamic interactions between railway vehicles and tracks. Wheel rail forces and dynamic responses of vehicle and track components can be simulated with the model. The model has been applied to the study of high speed and heavy haul railway dynamic problems. In order to verify the model completely, a full scale field experiment was performed on the Chinese Datong Qinhuangdao railway. Accelerations of rail, sleeper and ballast were measured and compared with the simulated results both in time domain and in frequency domain.展开更多
For modern phased array radar systems,the adaptive control of the target revisiting time is important for efficient radar resource allocation,especially in maneuvering target tracking applications.This paper presents ...For modern phased array radar systems,the adaptive control of the target revisiting time is important for efficient radar resource allocation,especially in maneuvering target tracking applications.This paper presents a novel interactive multiple model(IMM)algorithm optimized for tracking maneuvering near space hypersonic gliding vehicles(NSHGV)with a fast adaptive sam-pling control logic.The algorithm utilizes the model probabilities to dynamically adjust the revisit time corresponding to NSHGV maneuvers,thus achieving a balance between tracking accuracy and resource consumption.Simulation results on typical NSHGV targets show that the proposed algo-rithm improves tracking accuracy and resource allocation efficiency compared to other conventional multiple model algorithms.展开更多
文摘A theoretical model has been developed to investigate vertical dynamic interactions between railway vehicles and tracks. Wheel rail forces and dynamic responses of vehicle and track components can be simulated with the model. The model has been applied to the study of high speed and heavy haul railway dynamic problems. In order to verify the model completely, a full scale field experiment was performed on the Chinese Datong Qinhuangdao railway. Accelerations of rail, sleeper and ballast were measured and compared with the simulated results both in time domain and in frequency domain.
文摘For modern phased array radar systems,the adaptive control of the target revisiting time is important for efficient radar resource allocation,especially in maneuvering target tracking applications.This paper presents a novel interactive multiple model(IMM)algorithm optimized for tracking maneuvering near space hypersonic gliding vehicles(NSHGV)with a fast adaptive sam-pling control logic.The algorithm utilizes the model probabilities to dynamically adjust the revisit time corresponding to NSHGV maneuvers,thus achieving a balance between tracking accuracy and resource consumption.Simulation results on typical NSHGV targets show that the proposed algo-rithm improves tracking accuracy and resource allocation efficiency compared to other conventional multiple model algorithms.