期刊文献+
共找到1,426篇文章
< 1 2 72 >
每页显示 20 50 100
Underwater acoustic signal denoising model based on secondary variational mode decomposition
1
作者 Hong Yang Wen-shuai Shi Guo-hui Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第10期87-110,共24页
Due to the complexity of marine environment,underwater acoustic signal will be affected by complex background noise during transmission.Underwater acoustic signal denoising is always a difficult problem in underwater ... Due to the complexity of marine environment,underwater acoustic signal will be affected by complex background noise during transmission.Underwater acoustic signal denoising is always a difficult problem in underwater acoustic signal processing.To obtain a better denoising effect,a new denoising method of underwater acoustic signal based on optimized variational mode decomposition by black widow optimization algorithm(BVMD),fluctuation-based dispersion entropy threshold improved by Otsu method(OFDE),cosine similarity stationary threshold(CSST),BVMD,fluctuation-based dispersion entropy(FDE),named BVMD-OFDE-CSST-BVMD-FDE,is proposed.In the first place,decompose the original signal into a series of intrinsic mode functions(IMFs)by BVMD.Afterwards,distinguish pure IMFs,mixed IMFs and noise IMFs by OFDE and CSST,and reconstruct pure IMFs and mixed IMFs to obtain primary denoised signal.In the end,decompose primary denoising signal into IMFs by BVMD again,use the FDE value to distinguish noise IMFs and pure IMFs,and reconstruct pure IMFs to obtain the final denoised signal.The proposed mothod has three advantages:(i)BVMD can adaptively select the decomposition layer and penalty factor of VMD.(ii)FDE and CS are used as double criteria to distinguish noise IMFs from useful IMFs,and Otsu algorithm and CSST algorithm can effectively avoid the error caused by manually selecting thresholds.(iii)Secondary decomposition can make up for the deficiency of primary decomposition and further remove a small amount of noise.The chaotic signal and real ship signal are denoised.The experiment result shows that the proposed method can effectively denoise.It improves the denoising effect after primary decomposition,and has good practical value. 展开更多
关键词 Underwater acoustic signal DENOISING variational mode decomposition Secondary decomposition Fluctuation-based dispersion entropy Cosine similarity
在线阅读 下载PDF
基于SSA-VMD的空天地算力网络中数字孪生逻辑靶场负载预测 被引量:1
2
作者 陈浩 党政 +2 位作者 黑新宏 赵彤 张杰 《计算机工程》 北大核心 2025年第5期20-32,共13页
在空天地多层次算力网络背景下,针对数字孪生逻辑靶场中因负载数据复杂性和非平稳特征带来的精准预测挑战,提出融合格拉姆转场(GAF)、卷积神经网络(CNN)、通道注意力机制的压缩与激励网络(SENet)和门控循环单元(GRU)的GCSG模型。GCSG模... 在空天地多层次算力网络背景下,针对数字孪生逻辑靶场中因负载数据复杂性和非平稳特征带来的精准预测挑战,提出融合格拉姆转场(GAF)、卷积神经网络(CNN)、通道注意力机制的压缩与激励网络(SENet)和门控循环单元(GRU)的GCSG模型。GCSG模型通过GAF将一维负载数据转换为二维图像,利用CNN提取局部特征,使用SENet优化特征重要性,采用GRU捕捉时序特征,实现了高效的特征融合和精准预测。此外,GCSG模型采用融合麻雀搜索算法(SSA)的变分模态分解(VMD)对负载数据进行平稳化处理,进一步提高了预测性能。实验结果表明,GCSG模型在不同数据长度下均表现出优异的预测精度和稳定性,且在多步预测任务中同样表现突出。因此,GCSG模型显著提升了负载数据的预测精度,为空天地算力网络中的数字孪生系统负载预测提供了强有力的解决方案。 展开更多
关键词 空天地多层次算力网络 数字孪生 逻辑靶场 负载预测 变分模态分解
在线阅读 下载PDF
融合残差与VMD-TCN-BiLSTM混合网络的鄱阳湖总氮预测 被引量:1
3
作者 黄学平 辛攀 +3 位作者 吴永明 吴留兴 邓觅 姚忠 《长江科学院院报》 北大核心 2025年第3期59-67,75,共10页
对湖泊水质进行准确、高效的预测,对于保护水资源、维护生态平衡以及促进经济发展等方面都具有重要意义。为此提出了一种基于模态分解、多维特征选择、时间卷积网络(TCN)、自注意力机制、双向长短期神经网络(BiLSTM)和双向门控循环单元(... 对湖泊水质进行准确、高效的预测,对于保护水资源、维护生态平衡以及促进经济发展等方面都具有重要意义。为此提出了一种基于模态分解、多维特征选择、时间卷积网络(TCN)、自注意力机制、双向长短期神经网络(BiLSTM)和双向门控循环单元(BiGRU)的湖泊总氮(TN)组合预测模型。首先,采用变分模态分解将TN原始序列分解成不同频率的本征模态函数(IMF),以降低原始序列的复杂度和非平稳性;随后,通过随机森林算法为每个IMF选择相关性强的特征,将筛选出的特征矩阵输入到添加自注意力机制的TCN-BiLSTM混合网络中进行建模,充分提取数据中隐藏的关键时序信息;最后,为进一步提升模型预测精度,采用BiGRU网络学习残差序列的细节特征,将残差与模型预测结果融合得到最终的预测值。以鄱阳湖都昌监测站的水质数据为例进行试验分析,结果表明本文模型相比于其他模型对TN浓度预测效果提升明显,其平均绝对误差(MAE)、均方根误差(RMSE)和决定系数(R^(2))分别为0.03 mg/L、0.049 mg/L、0.992。 展开更多
关键词 水质预测 总氮 变分模态分解 时间卷积网络 集成预测
在线阅读 下载PDF
基于优化VMD和BiLSTM的短期负荷预测 被引量:3
4
作者 谢国民 陆子俊 《电力系统及其自动化学报》 北大核心 2025年第4期30-39,共10页
针对电力负荷数据周期性强、波动性高,预测效果不佳的问题,建立一种基于优化变分模态分解、改进沙猫群优化(improved sand cat swarm optimization,ISCSO)算法和双向长短时记忆(bidirectional long short-term memory,BiLSTM)网络的集... 针对电力负荷数据周期性强、波动性高,预测效果不佳的问题,建立一种基于优化变分模态分解、改进沙猫群优化(improved sand cat swarm optimization,ISCSO)算法和双向长短时记忆(bidirectional long short-term memory,BiLSTM)网络的集成预测模型。首先,对原始电力负荷数据进行变分模态分解,降低数据复杂度,在变分模态分解中,引入白鲸算法对分解层数和惩罚因子寻优,优化分解效果。其次,采用Logistic混沌映射、螺旋搜索和麻雀思想引入的多策略改进方法,增加原始沙猫群优化算法的种群多样性,提升收敛精度和全局搜索能力,并用改进后的算法对BiLSTM中的超参数进行优化。然后,结合AdaBoost集成学习算法构建ISCSO-Bi LSTM-AdaBoost预测模型,将分解后的各分量输入模型预测。最后将各预测值叠加,得到最终预测结果。实验结果表明,本文建立的组合模型预测精度高,稳定性强。 展开更多
关键词 电力负荷预测 变分模态分解 双向长短期记忆网络 改进沙猫群优化算法 集成学习算法
在线阅读 下载PDF
基于改进VMD及ConvNeXt的小电流接地系统单相接地故障选线方法 被引量:1
5
作者 张浩 张大海 +2 位作者 刘乃毓 吴奎忠 侍哲 《高电压技术》 北大核心 2025年第2期730-741,I0021,共13页
对于小电流接地系统的单相接地故障选线,传统方法普遍采用基于一维信号的选线模型,存在选线准确率低、抗噪性弱等问题。为此提出一种改进的变分模态分解及Conv Ne Xt的小电流接地系统单相接地故障选线方法。首先引入蚁狮算法优化变分模... 对于小电流接地系统的单相接地故障选线,传统方法普遍采用基于一维信号的选线模型,存在选线准确率低、抗噪性弱等问题。为此提出一种改进的变分模态分解及Conv Ne Xt的小电流接地系统单相接地故障选线方法。首先引入蚁狮算法优化变分模态分解算法,通过蚁狮算法自动寻优选取合适的分解次数和惩罚因子,计算分解得到的各分量的分布熵,将其中的噪声分量筛选去除,将其余有效分量进行线性重构得到降噪后的零序电流信号;其次,将经过降噪处理后的一维零序电流信号经格拉姆角场转换为二维图像,制备故障选线数据集;然后,引入预训练的ConvNeXt模型,根据该研究数据模型特征,在其已有权重基础上对模型参数进行对应微调,从而提高模型精度并形成最终的选线模型;最后引入绝对平均误差、均方根误差作为评价指标验证所提降噪算法有效性。分别在加入噪声与否的前提下,将所提模型与3种选线模型相比较。实验结果表明该模型的准确率最高、抗噪性方面更好,其中该研究算法准确率达到了99.82%并且在不同噪声条件下都能维持91%以上的准确率,高于其他选线模型,克服了传统故障选线方法准确率低、抗噪性差的问题。 展开更多
关键词 故障选线 蚁狮优化算法 变分模态分解 分布熵 格拉姆角场 Conv Ne Xt
在线阅读 下载PDF
基于SAO-VMD-S的双端柔性直流输电故障测距方案 被引量:1
6
作者 王思华 王羚佰 《电力系统保护与控制》 北大核心 2025年第1期1-12,共12页
针对柔性直流输电线路故障定位过程中信号易受噪声干扰、耐过渡电阻能力差的问题,提出了采用小波变换(wavelet transform,WT)进行消噪处理、并结合变分模态分解(variational mode decomposition,VMD)的柔性直流输电线路故障定位方案。... 针对柔性直流输电线路故障定位过程中信号易受噪声干扰、耐过渡电阻能力差的问题,提出了采用小波变换(wavelet transform,WT)进行消噪处理、并结合变分模态分解(variational mode decomposition,VMD)的柔性直流输电线路故障定位方案。首先利用基于Logistic函数的循环位移小波阈值去噪对故障信号进行处理。然后采用雪消融优化器(snow ablation optimizer,SAO)结合VMD对信号进行有效分解。最后对分解后的高频分量进行S变换(S-transform,ST),选取对应频率下的幅值曲线进行波头标定。此外,提出了一种不依赖波速的测距算法。在PSCAD/EMTDC平台中搭建双端柔性直流系统并进行仿真验证。结果表明,所提方案不仅对采样率要求低,且能耐受300Ω的过渡电阻和30 dB的噪声,在不同故障距离下均能准确进行测距。 展开更多
关键词 柔性直流输电 小波去噪 雪消融优化器 变分模态分解 S变换 故障测距
在线阅读 下载PDF
基于改进VMD与熵值特征融合的滚动轴承故障特征提取方法
7
作者 刘亚荣 支正新 谢晓兰 《科学技术与工程》 北大核心 2025年第28期12013-12022,共10页
针对变分模态分解(variational mode decomposition,VMD)人为选择惩罚因子和模态个数难以有效分解振动信号,导致故障诊断识别率低的问题,提出一种基于改进VMD与熵值特征融合的滚动轴承故障特征提取方法。首先,利用Cubic混沌映射、黄金... 针对变分模态分解(variational mode decomposition,VMD)人为选择惩罚因子和模态个数难以有效分解振动信号,导致故障诊断识别率低的问题,提出一种基于改进VMD与熵值特征融合的滚动轴承故障特征提取方法。首先,利用Cubic混沌映射、黄金正弦策略改进海象优化算法(improved walrus optimization algorithm,IWaOA)。然后用IWaOA优化VMD,找出最佳的惩罚因子和模态个数,再使用VMD对振动信号进行分解并计算各个模态分量的7种熵值特征,建立IWaOA-VMD特征提取模型。其次,采用线性判别分析(linear discriminant analysis,LDA)方法对7种熵值特征进行降维融合,得到融合后的特征向量输入反向传播(back propagation,BP)神经网络中进行识别,建立LDA-BP故障识别模型。最后,对本文方法进行实验验证。结果表明:所提方法在对凯斯西储大学轴承数据集上的故障识别准确率达99.58%,且在强噪声干扰下达到92%以上的准确率;为验证其适用性,进一步在对西安交通大学XJTU-SY数据集上的故障识别准确率达到100%,证实了所提方法的噪声鲁棒性与多源数据适用性。 展开更多
关键词 振动信号 变分模态分解(vmd) 特征提取 故障诊断
在线阅读 下载PDF
基于DAS-VMD的甲烷/一氧化碳痕量气体同步监测及噪声抑制方法
8
作者 邵昊 袁玉洁 +2 位作者 王凯 张贝 黎奉标 《中国安全生产科学技术》 北大核心 2025年第10期88-95,共8页
为提高煤矿有毒有害气体CH_(4)和CO的实时动态监测能力,基于直接激光吸收光谱(DAS)与变分模态分解法(VMD),研究CH_(4)和CO双组份气体同步在线监测系统,并进行试验验证。针对CH_(4)和CO痕量气体,选用中心波长为1653.4 nm和2325.2 nm的2... 为提高煤矿有毒有害气体CH_(4)和CO的实时动态监测能力,基于直接激光吸收光谱(DAS)与变分模态分解法(VMD),研究CH_(4)和CO双组份气体同步在线监测系统,并进行试验验证。针对CH_(4)和CO痕量气体,选用中心波长为1653.4 nm和2325.2 nm的2台分布式反馈激光器,采用时分复用(TDM)技术,构建双组份痕量气体同步在线监测系统,克服双激光器工作时的相互干扰;优化VMD方法,实现信号分解和噪声抑制,提高检测系统的信噪比;搭建煤自燃在线监测实验平台,开展煤自燃长时间的在线监测试验。研究结果表明:降噪后CH_(4)和CO的探测极限分别为9.4×10^(-6)%与9.9×10^(-6)%,CH_(4)和CO检测极限降幅为38.4%,39.2%;所构建系统在煤自燃过程中对CH_(4)和CO体积分数变化具有良好的跟踪能力与检测可靠性。研究结果可为煤矿灾害气体的高精度、高稳定性实时监测提供可靠的技术手段,提高煤自燃早期预警能力。 展开更多
关键词 直接激光吸收光谱(DAS) 变分模态分解法(vmd) 甲烷 一氧化碳 痕量气体 噪声抑制
在线阅读 下载PDF
基于VMD-BN的液压支架电磁先导阀故障诊断方法研究
9
作者 张杰 杨爱琴 +6 位作者 许春雨 宋建成 田慕琴 宋单阳 李磊 郝振杰 马锐 《机床与液压》 北大核心 2025年第16期164-171,179,共9页
电磁先导阀是液压支架电液控制系统的重要组成部分,其数量大、故障率高且难以识别,直接影响电液控制系统工作的可靠性和连续性,已成为影响综采工作面自动化生产的主要问题之一。针对此,对电液控制系统先导阀的故障检测、故障分析和故障... 电磁先导阀是液压支架电液控制系统的重要组成部分,其数量大、故障率高且难以识别,直接影响电液控制系统工作的可靠性和连续性,已成为影响综采工作面自动化生产的主要问题之一。针对此,对电液控制系统先导阀的故障检测、故障分析和故障诊断方法进行研究,提出基于电流信号变分模态分解和贝叶斯网络的电液控制系统电磁先导阀故障诊断方法。采用变分模态分解算法对液压支架电磁先导阀的驱动电流信号进行分析,利用鲸鱼优化算法优化IMF个数和惩罚因子,得到多个时域和频域的分量。提取电流信号各个分量的能量熵,将其作为故障特征向量并输入所建立的贝叶斯网络中分析故障原因,利用先验概率和条件概率对故障发生的后验概率进行推理。最后,通过煤矿井下实际的故障电磁先导阀对文中所提故障诊断方法进行实验验证。结果表明:所提诊断方法可以基于电磁阀驱动电流单一信源提取能量特征差异,实现电磁先导阀的故障诊断,准确率达到90%;与现有诊断方法相比,准确性提高,实施难度降低。 展开更多
关键词 电磁先导阀 变分模态分解 能量熵 贝叶斯网络 故障诊断
在线阅读 下载PDF
基于参数优化VMD的心率检测去噪算法
10
作者 肖剑 张现国 +2 位作者 宋烨 杨小苑 程鸿亮 《现代雷达》 北大核心 2025年第6期46-55,共10页
针对毫米波雷达的非接触式生命体征信号检测中存在静态杂波和呼吸谐波干扰噪声等问题,文中提出一种基于改进浣熊优化算法的变分模态分解(ICOA-VMD)噪声抑制算法。浣熊优化算法采用混沌种群初始化和自适应函数分布提高算法的种群多样性... 针对毫米波雷达的非接触式生命体征信号检测中存在静态杂波和呼吸谐波干扰噪声等问题,文中提出一种基于改进浣熊优化算法的变分模态分解(ICOA-VMD)噪声抑制算法。浣熊优化算法采用混沌种群初始化和自适应函数分布提高算法的种群多样性和全局搜索能力,文中利用ICOA对VMD的最佳适应度参数进行搜索,确定惩罚参数和分量个数,对心跳信号进行重构,从而实现心跳信号的干扰噪声去除。实验结果表明,ICOA-VMD方法具有收敛速度快、精度高的特点,信噪比和均方误差的评估和时域分析验证了该算法相较于小波变换和经验模态分解具有更好的性能。在不同距离的常规环境下,该方法针对不同受试者的心率检测平均精确度可以达到95.40%。 展开更多
关键词 毫米波雷达 信号处理 心率检测 浣熊优化算法 变分模态分解
在线阅读 下载PDF
基于SVD与参数优化VMD的联合降噪方法研究
11
作者 赵月静 杜国 +1 位作者 才进 秦志英 《海军工程大学学报》 北大核心 2025年第5期92-98,共7页
针对滚动轴承因长期处于强噪声工作环境而故障频发,且早期故障信息微弱难以提取等问题,提出了一种基于奇异值分解(singular value decomposition,SVD)与参数优化变分模态分解(variational mode decomposition,VMD)的联合降噪方法。首先... 针对滚动轴承因长期处于强噪声工作环境而故障频发,且早期故障信息微弱难以提取等问题,提出了一种基于奇异值分解(singular value decomposition,SVD)与参数优化变分模态分解(variational mode decomposition,VMD)的联合降噪方法。首先,对轴承振动信号进行了SVD,依据奇异值差分谱理论确定了有效奇异值的阶数并进行了叠加重构,经过矩阵逆变换得到了初步降噪信号;然后,运用灰狼优化算法对VMD的模态个数K和惩罚因子α两参数寻优后进一步分解了初步降噪信号,同时基于峭度和相关系数复合指标选取模态分量;最后,对筛选信号进行了重构,并包络解调分析了降噪前后的故障特征频率。仿真数据和实验数据分析表明:所提方法在强噪声背景下或故障特征信息极其微弱时,都能够有效抑制噪声并提取有效故障信息。 展开更多
关键词 奇异值分解 降噪 变分模态分解 特征提取 参数优化
在线阅读 下载PDF
基于VMD-RNN-NM的农产品期货价格分解集成预测研究
12
作者 袁宏俊 黄胜龙 胡凌云 《安徽大学学报(自然科学版)》 北大核心 2025年第5期1-10,共10页
为了捕捉高频数据中的复杂波动特征并提高期货价格的预测精度,采用了一种分解集成的策略,构建了基于变分模态分解(variational mode decomposition,简称VMD)、循环神经网络(recurrent neural network,简称RNN)和下山单纯形法(nelder-me... 为了捕捉高频数据中的复杂波动特征并提高期货价格的预测精度,采用了一种分解集成的策略,构建了基于变分模态分解(variational mode decomposition,简称VMD)、循环神经网络(recurrent neural network,简称RNN)和下山单纯形法(nelder-mead,简称NM)的分解集成预测模型.首先,利用VMD将原始信号序列分解成多个固有模态函数(intrinsic mode function,简称IMF);接着,使用RNN并结合网格搜索方法对各IMF值进行预测;最后,采用NM寻找IMFs预测值的最优系数,进行加权集成后得到最终预测结果.为了验证模型的有效性,选取农产品期货的5 min交易价格作为研究对象,实证结果表明,所提出的分解集成预测模型在预测精度方面显著优于单一预测模型,说明通过分解期货交易价格数据,分解集成模型在一定程度上能够有效捕捉多尺度特征,从而提升预测效果.同时,在对各IMF值进行汇总时,相较于传统的直接加总方法,论文为每个IMF分配不同的系数进行加权组合,更能提高模型的精度. 展开更多
关键词 变分模态分解 循环神经网络 下山单纯形法 高频数据 分解集成预测
在线阅读 下载PDF
基于改进SVD-HPO-VMD电缆局部放电去噪方法
13
作者 马星河 李凯濛 +1 位作者 赵军营 刘鹏 《广东电力》 北大核心 2025年第4期89-100,共12页
对局部放电(partial discharge,PD)的检测是获知高压电缆绝缘状态的主要手段之一,但现场对PD信号的检测易受到噪声的干扰,从而影响对信号检测的准确度。为此,提出一种采用猎人猎物优化算法(hunter-prey optimization algorithm,HPO)优... 对局部放电(partial discharge,PD)的检测是获知高压电缆绝缘状态的主要手段之一,但现场对PD信号的检测易受到噪声的干扰,从而影响对信号检测的准确度。为此,提出一种采用猎人猎物优化算法(hunter-prey optimization algorithm,HPO)优化变分模态分解(variational mode decomposition,VMD),再采用改进奇异值分解(singular value decomposition,SVD)对PD信号进行降噪的方法。首先,对含噪PD信号进行傅里叶变换,在傅里叶变换功率谱中运用差分变换及设定阈值的方法去筛选周期性窄带干扰奇异值;然后,通过HPO优化VMD的参数选择,分解出K个本征模态函数(intrinsic mode function,IMF),利用模糊散布熵(fuzzy dispersion entropy,FuzzyDispEn)确定IMF的性质,从而区分有效分量和噪声分量,对分类后的噪声主导分量通过改进小波阈值方法进行去噪;最后,将信号进行重构,通过仿真和实验计算去噪后信号的信噪比、归一化相关系数以及均方误差,并与传统方法进行比对,证明提出的方法能够有效去除PD信号中的噪声分量,能够运用到供电系统中。 展开更多
关键词 局部放电 变分模态分解 奇异值分解 猎人猎物优化算法 模糊散布熵
在线阅读 下载PDF
基于EEMD-GWO-VMD的滚动轴承故障特征提取
14
作者 张涛 张振彬 谢剑龙 《中国工程机械学报》 北大核心 2025年第3期470-475,共6页
针对滚动轴承工作环境恶劣、故障信号难以提取的问题,提出一种基于EEMD-GWO-VMD的滚动轴承双重降噪方法。首先,利用集合经验模态分解(EEMD)对采集到的信号进行分解,通过相关系数和峭度指标组合筛选富含故障信息的分量并进行重构。然后,... 针对滚动轴承工作环境恶劣、故障信号难以提取的问题,提出一种基于EEMD-GWO-VMD的滚动轴承双重降噪方法。首先,利用集合经验模态分解(EEMD)对采集到的信号进行分解,通过相关系数和峭度指标组合筛选富含故障信息的分量并进行重构。然后,以包络熵为目标函数,采用灰狼算法(GWO)优化变分模态分解(VMD)的惩罚因子和模态分解层数,并采用仿真信号对比分析VMD、GWO-VMD和EEMD-GWO-VMD这3种方法的降噪效果。最后,结合CWRU数据集和高速列车轴箱轴承台架试验数据,进一步验证EEMD-GWO-VMD降噪方法的有效性。 展开更多
关键词 滚动轴承 灰狼算法(GWO) 集成经验模态分解(EEMD) 变分模态分解(vmd)
在线阅读 下载PDF
基于GMVMD-ECA-ResNet-MA在生产噪声环境下轴承套圈磨削烧伤识别
15
作者 迟玉伦 高程远 +1 位作者 朱欢欢 朱文博 《振动与冲击》 北大核心 2025年第17期295-312,共18页
为实现生产噪声环境下小样本、多型号的轴承套圈磨削烧伤现象的有效识别,避免不合格零件流入装配环节,提出一种多元模态分解(multivariate variational modal decomposition,MVMD)和残差神经网络相结合的轴承套圈磨削烧伤识别方法。首先... 为实现生产噪声环境下小样本、多型号的轴承套圈磨削烧伤现象的有效识别,避免不合格零件流入装配环节,提出一种多元模态分解(multivariate variational modal decomposition,MVMD)和残差神经网络相结合的轴承套圈磨削烧伤识别方法。首先,利用灰狼算法对MVMD进行参数寻优,筛选本征模态函数进行信号重构,实现多元信号联合去噪;其次,将去噪后的信号利用格拉姆角场转换为二维图像并进行多通道融合,获得红绿蓝融合特征图;然后,将其作为输入构建融合多注意力的识别模型GMVMD-ECA-ResNet-MA进行磨削烧伤特征提取及分类,再使用不同型号轴承套圈数据并微调基础模型权重参数,进行迁移学习,实现轴承套圈多型号烧伤识别。最后,试验结果表明:GMVMD-ECA-ResNet-MA在仅有少量训练样本的情况下,烧伤识别率依然可达90%以上。与其他模型进行对比,两组迁移任务中所得模型的平均识别准确率分别为94.44%与95.83%,因此,本文所提方法得到的模型在生产噪声环境下具有更高的识别准确率和更强的泛化能力。 展开更多
关键词 多元变分模态分解(Mvmd) 深度学习 磨削烧伤 格拉姆角场
在线阅读 下载PDF
基于BWO和WOA的VMD-LSTM短期风速预测
16
作者 贾世会 刘立夫 +1 位作者 迟晓妮 李高西 《郑州大学学报(工学版)》 北大核心 2025年第3期59-66,共8页
针对风电机组组网运行存在的功率波动性和随机性,为提高风速预测的精度和风电机组运行的稳定性,提出了一种基于白鲸优化算法和鲸鱼优化算法的VMD-LSTM短期风速预测模型。首先,利用白鲸优化算法对VMD中的模态数及惩罚因子进行优化,得到... 针对风电机组组网运行存在的功率波动性和随机性,为提高风速预测的精度和风电机组运行的稳定性,提出了一种基于白鲸优化算法和鲸鱼优化算法的VMD-LSTM短期风速预测模型。首先,利用白鲸优化算法对VMD中的模态数及惩罚因子进行优化,得到分解的子序列;其次,对于LSTM中的隐含层节点数、最大训练次数和初始学习率等参数,使用鲸鱼优化算法进行确定;最后,利用LSTM的非线性拟合能力对数据进行预测。结果表明:所提预测模型在测试集上的RMSE、MAE、MAPE分别为0.2234,0.1727,0.0837,均低于其他对比模型,验证了所提模型在短期风速预测问题上的有效性。 展开更多
关键词 白鲸优化算法 鲸鱼优化算法 变分模态分解 LSTM 风速预测
在线阅读 下载PDF
基于声阵列与SHO-VMD-FastICA的750kV电抗器声纹分离方法研究及应用
17
作者 王果 李宝鹏 +3 位作者 闵永智 何怡刚 贺建山 霍奕辰 《高电压技术》 北大核心 2025年第9期4588-4598,I0013-I0015,共14页
750 kV电抗器实测声纹信号中包含高低频段的干扰噪声,严重影响电抗器声纹识别精度,需要进行电抗器本体声纹分离。首先,采用声阵列采集750 kV电抗器声纹信号,并通过数据一致性检验算法对各阵元进行甄别,筛选有效阵元数据构建观测信号矩阵... 750 kV电抗器实测声纹信号中包含高低频段的干扰噪声,严重影响电抗器声纹识别精度,需要进行电抗器本体声纹分离。首先,采用声阵列采集750 kV电抗器声纹信号,并通过数据一致性检验算法对各阵元进行甄别,筛选有效阵元数据构建观测信号矩阵;然后,利用海马优化算法对变分模态分解算法的分解层数K与惩罚因子α进行寻优,进而根据最优参数组合[K,α]分解观测信号,并选取1 kHz以内的模态分量重构观测信号,实现高频干扰噪声的滤除;最后,采用快速独立成分分析法从多维降噪观测信号中分离出750 kV电抗器本体声纹信号。采用该方法分离所得750 kV电抗器本体声纹信号与对照信号的相似系数为0.954 2,信噪比为10.548 2 dB,与SCA算法相比分别提升6.63%和2.282 7 dB,表明该方法具有更高的适用性和准确性。 展开更多
关键词 750 kV电抗器 声纹分离 声阵列 变分模态分解 盲源分离
在线阅读 下载PDF
基于调和分析及VMD-LSTM混合模型的甬江河口水位预报方法
18
作者 陈永平 韩韬 +3 位作者 邱超 甘敏 谭亚 王瑾琪 《河海大学学报(自然科学版)》 北大核心 2025年第2期1-10,共10页
为解决甬江感潮河段潮位预报总体精度偏低的问题,构建了一种基于经典调和分析(T_TIDE)、变分模态分解(VMD)和长短时记忆神经网络(LSTM)的混合模型(VMD-LSTM混合模型)。VMD-LSTM混合模型采用T_TIDE程序包对甬江河口逐时水位数据进行回报... 为解决甬江感潮河段潮位预报总体精度偏低的问题,构建了一种基于经典调和分析(T_TIDE)、变分模态分解(VMD)和长短时记忆神经网络(LSTM)的混合模型(VMD-LSTM混合模型)。VMD-LSTM混合模型采用T_TIDE程序包对甬江河口逐时水位数据进行回报(即潮位),用实测水位减去潮位得到相应余水位,并采用VMD模型将余水位分解为13个本征模函数(IMF),依次对应D0~D12潮族,采用LSTM模型分别训练余水位的各个IMF分量和潮位并分别向后预报12~48h,各个IMF分量和潮位的预报值之和即为河口水位的预测值。结果表明:VMD模型可对甬江河口余水位中D0~D12潮族波动进行完全分离;VMD-LSTM混合模型12、24、36、48h短期水位预报的均方根误差(RMSE)比LSTM模型最多分别降低了0.15、0.13、0.16、0.16m;VMD-LSTM混合模型在D0、D2潮族频带的误差修正最明显,相比LSTM模型,可分别将D0、D2潮族的谱峰预报误差最多降低0.05、0.04m·d^(0.5)。 展开更多
关键词 甬江口 河口潮汐 变分模态分解 LSTM模型 调和分析 水位预报
在线阅读 下载PDF
基于STOA-VMD和改进TCN模型的水泵机组振动趋势预测
19
作者 王伟生 张宁 +5 位作者 邢磊 周保林 郭新帅 安东 高源 张孝远 《人民黄河》 北大核心 2025年第4期141-144,151,共5页
水泵机组振动趋势预测是保障机组正常运行的重要措施,而振动信号的复杂性和非线性使预测变得困难。为此,提出一种基于STOA-VMD和改进时间卷积网络(TCN)的水泵机组振动趋势预测模型。首先采用乌燕鸥算法(STOA)进行变分模态分解(VMD)参数... 水泵机组振动趋势预测是保障机组正常运行的重要措施,而振动信号的复杂性和非线性使预测变得困难。为此,提出一种基于STOA-VMD和改进时间卷积网络(TCN)的水泵机组振动趋势预测模型。首先采用乌燕鸥算法(STOA)进行变分模态分解(VMD)参数优化,实现振动信号的最优自适应分解,然后利用改进TCN对每个分解模态进行预测,最后叠加所有结果得到最终预测结果。以国内某雨水泵站水泵机组为例,基于水导轴承水平向摆度数据进行模型验证。结果表明:上述组合模型的预测值与监测值的变化趋势基本一致,其具有良好的预测能力。与STOA-VMD-TCN、VMD-EnTCN、VMD-TCN、TCN模型相比,所提出模型的E_(MA)、E_(RMS)、E_(MAP)最小,预测精度最高。 展开更多
关键词 时间卷积网络 乌燕鸥算法 变分模态分解 振动信号 趋势预测 水泵机组
在线阅读 下载PDF
基于AOA优化SVMD和A-CNN的矿井电网单相接地故障选线方法研究
20
作者 杨战社 张程 +3 位作者 荣相 魏礼鹏 李瑞 韩耀 《煤炭工程》 北大核心 2025年第7期171-178,共8页
针对矿井电网单相接地故障选线受井下环境的干扰较大、故障选线速度和准确率低等问题,提出一种基于算术优化算法改进连续变分模态分解和注意力机制卷积神经网络的故障选线方法。首先,通过算术优化算法优化连续变分模态分解的参数,把零... 针对矿井电网单相接地故障选线受井下环境的干扰较大、故障选线速度和准确率低等问题,提出一种基于算术优化算法改进连续变分模态分解和注意力机制卷积神经网络的故障选线方法。首先,通过算术优化算法优化连续变分模态分解的参数,把零序电流序列分解成不同频率的固有模态函数;其次,引入相对位置矩阵的数据预处理方式,将一维序列转换成二维图像,获得零序电流信号的时频特征图;最后,将注意力机制嵌入到CNN分类算法模型中,实现故障选线。仿真与实验结果表明,该方法能够在强噪声、采样时间不同步等情况下准确地选择出故障线路,可满足矿井电网对选线准确性和可靠性的需求。 展开更多
关键词 矿井供电系统 单相接地故障 连续变分模态分解 算术优化算法 注意力机制
在线阅读 下载PDF
上一页 1 2 72 下一页 到第
使用帮助 返回顶部