期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Astronomical image restoration using variational Bayesian blind deconvolution
1
作者 Xiaoping Shi Rui Guo +1 位作者 Yi Zhu Zicai Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第6期1236-1247,共12页
An algorithm is presented for image prior combinations based blind deconvolution and applied to astronomical images.Using a hierarchical Bayesian framework, the unknown original image and all required algorithmic para... An algorithm is presented for image prior combinations based blind deconvolution and applied to astronomical images.Using a hierarchical Bayesian framework, the unknown original image and all required algorithmic parameters are estimated simultaneously. Through utilization of variational Bayesian analysis,approximations of the posterior distributions on each unknown are obtained by minimizing the Kullback-Leibler(KL) distance, thus providing uncertainties of the estimates during the restoration process. Experimental results on both synthetic images and real astronomical images demonstrate that the proposed approaches compare favorably to other state-of-the-art reconstruction methods. 展开更多
关键词 blind deconvolution variational bayesian model com bination astronomical image processing
在线阅读 下载PDF
A novel detection method for warhead fragment targets in optical images under dynamic strong interference environments
2
作者 Guoyi Zhang Hongxiang Zhang +4 位作者 Zhihua Shen Deren Kong Chenhao Ning Fei Shang Xiaohu Zhang 《Defence Technology(防务技术)》 2025年第1期252-270,共19页
A measurement system for the scattering characteristics of warhead fragments based on high-speed imaging systems offers advantages such as simple deployment,flexible maneuverability,and high spatiotemporal resolution,... A measurement system for the scattering characteristics of warhead fragments based on high-speed imaging systems offers advantages such as simple deployment,flexible maneuverability,and high spatiotemporal resolution,enabling the acquisition of full-process data of the fragment scattering process.However,mismatches between camera frame rates and target velocities can lead to long motion blur tails of high-speed fragment targets,resulting in low signal-to-noise ratios and rendering conventional detection algorithms ineffective in dynamic strong interference testing environments.In this study,we propose a detection framework centered on dynamic strong interference disturbance signal separation and suppression.We introduce a mixture Gaussian model constrained under a joint spatialtemporal-transform domain Dirichlet process,combined with total variation regularization to achieve disturbance signal suppression.Experimental results demonstrate that the proposed disturbance suppression method can be integrated with certain conventional motion target detection tasks,enabling adaptation to real-world data to a certain extent.Moreover,we provide a specific implementation of this process,which achieves a detection rate close to 100%with an approximate 0%false alarm rate in multiple sets of real target field test data.This research effectively advances the development of the field of damage parameter testing. 展开更多
关键词 Damage parameter testing Warhead fragment target detection High-speed imaging systems Dynamic strong interference disturbance suppression variational bayesian inference Motion target detection Faint streak-like target detection
在线阅读 下载PDF
New statistical model for radar HRRP target recognition 被引量:2
3
作者 Qingyu Hou Feng Chen Hongwei Liu Zheng Bao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第2期204-210,共7页
The mixture of factor analyzers (MFA) can accurately describe high resolution range profile (HRRP) statistical charac- teristics. But how to determine the proper number of the models is a problem. This paper devel... The mixture of factor analyzers (MFA) can accurately describe high resolution range profile (HRRP) statistical charac- teristics. But how to determine the proper number of the models is a problem. This paper develops a variational Bayesian mixture of factor analyzers (VBMFA) model. This procedure can obtain a lower bound on the Bayesian integral using the Jensen's inequality. An analytical solution of the Bayesian integral could be obtained by a hypothesis that latent variables in the model are indepen- dent. During computing the parameters of the model, birth-death moves are utilized to determine the optimal number of model au- tomatically. Experimental results for measured data show that the VBMFA method has better recognition performance than FA and MFA method. 展开更多
关键词 radar automatic target recognition (RATR) high reso- lution range profile (HRRP) variational bayesian mixtures of factor analyzers (VBMFA) variational bayesian(VB) mixtures of factor analyzers (MFA).
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部