期刊文献+
共找到25篇文章
< 1 2 >
每页显示 20 50 100
基于聚类SABO-VMD和组合神经网络的短期光伏发电功率预测 被引量:4
1
作者 冯建铭 希望·阿不都瓦依提 蔺红 《太阳能学报》 北大核心 2025年第2期357-366,共10页
针对光伏发电预测单一模型处于不同天气状况时预测精度不高等问题,建立以卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)为基础的组合神经网络模型。提出一种基于鱼鹰优化算法(OOA),用以优化组合神经网络参数。此外引入注意力机制(Atte... 针对光伏发电预测单一模型处于不同天气状况时预测精度不高等问题,建立以卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)为基础的组合神经网络模型。提出一种基于鱼鹰优化算法(OOA),用以优化组合神经网络参数。此外引入注意力机制(Attention)突出强相关性因素的影响。采用高斯混合模型聚类(GMM)划分历史光伏数据为数个天气类型,并提出基于减法平均的优化算法(SABO)优化变分模态分解(VMD)参数,实现对各天气类型数据的分解。实验结果表明:基于SABO-VMD优化数据分解参数能有效提高预测精度;经实验对比分析,该文所提模型精度明显更高。 展开更多
关键词 光伏功率 变分模态分解 神经网络 功率预测 注意力机制 高斯混合模型聚类
在线阅读 下载PDF
基于高斯混合聚类和改进条件变分自编码的多风电场功率日场景生成方法 被引量:4
2
作者 李丹 梁云嫣 +3 位作者 缪书唯 方泽仁 胡越 贺帅 《中国电力》 CSCD 北大核心 2024年第12期17-29,共13页
大量出力不确定的风电场并入电网会带来运行隐患和不可控风险,基于变分自编码器的场景生成模型方法能生成确定性场景集合以描述风电出力的不确定性。针对多风电场出力复杂的时空相关性以及在传统变分自编码器模型训练过程中可能存在的... 大量出力不确定的风电场并入电网会带来运行隐患和不可控风险,基于变分自编码器的场景生成模型方法能生成确定性场景集合以描述风电出力的不确定性。针对多风电场出力复杂的时空相关性以及在传统变分自编码器模型训练过程中可能存在的“KL坍缩”等问题,提出一种基于高斯混合聚类和改进条件变分自编码器的多风电场时空功率日场景生成方法。通过引入二维卷积技术提取时空相关性进行降维,并采用最大化最小夹角独立正则化技术,强化隐特征的独立性;采用超球面分布替代高斯分布,避免模型出现“KL坍缩”,提高模型场景生成训练的稳定性和准确性;另外,进一步考虑多风电场功率日场景的多样性和灵活性,引入高斯混合聚类技术,使模型可根据特定的条件标签生成具有差异化特征的确定性场景集。实际算例的结果表明,相较于常见方法,所提方法累积概率分布误差下降了17%~71%,时空相关性平均误差分别下降了85%~97%和55%~91%,且能精准生成不同风况类别占比的多风电场功率日场景集,提高了场景生成的多样性和灵活性。 展开更多
关键词 风电场景生成 高斯混合模型 特征提取 条件变分自编码器 超球面分布 正则化技术
在线阅读 下载PDF
基于FPGA的两阶段配电网拓扑实时辨识算法 被引量:3
3
作者 王冠淇 裴玮 +2 位作者 李洪涛 郝良 马丽 《电力系统自动化》 EI CSCD 北大核心 2024年第12期100-108,共9页
对配电网拓扑进行准确的实时辨识是电力系统安全稳定运行的基础,但随着新能源的接入以及配电网规模不断增大,配电网拓扑结构的动态变化愈加频繁且难以辨识。然而,现有配电网拓扑辨识算法所使用的历史数据需要人工对其进行拓扑标注,且拓... 对配电网拓扑进行准确的实时辨识是电力系统安全稳定运行的基础,但随着新能源的接入以及配电网规模不断增大,配电网拓扑结构的动态变化愈加频繁且难以辨识。然而,现有配电网拓扑辨识算法所使用的历史数据需要人工对其进行拓扑标注,且拓扑辨识时间长,难以实现配电网拓扑实时辨识。因此,文中提出了一种基于现场可编程逻辑门阵列(FPAG)的两阶段配电网拓扑结构实时辨识算法。该算法不需要预先给出配电网拓扑类别的数量,即可对已有历史数据进行相应的拓扑标注及分类,并且基于FPGA实现了对配电网拓扑的实时辨别。该算法分为2个阶段:第1阶段采用变分贝叶斯高斯混合模型,对已有历史数据进行相应的拓扑标注及分类;第2阶段采用麻雀搜索算法,使得支持向量机快速收敛得到最优参数,以实现对配电网拓扑结构的精准辨识。基于该算法,利用FPGA并行架构以及高速高密度特性建立了实时拓扑结构辨识平台。最后,通过算例分析验证了所提辨识方法的有效性和优越性。 展开更多
关键词 配电网 拓扑辨识 现场可编程逻辑门阵列(FPGA) 变分贝叶斯高斯混合模型 麻雀搜索算法 支持向量机
在线阅读 下载PDF
基于2dSVD和高斯混合模型的多变量时间序列聚类 被引量:1
4
作者 杨秋颖 翁小清 《计算机应用与软件》 北大核心 2024年第3期283-289,327,共8页
针对多变量时间序列(MTS)存在时间和变量两个维度,以及传统主成分分析(PCA)方法在MTS数据表示上的局限性,提出一种基于二维奇异值分解(2dSVD)和高斯混合模型(GMM)的MTS聚类算法。该文计算MTS的行-行和列-列协方差矩阵的特征向量,从时间... 针对多变量时间序列(MTS)存在时间和变量两个维度,以及传统主成分分析(PCA)方法在MTS数据表示上的局限性,提出一种基于二维奇异值分解(2dSVD)和高斯混合模型(GMM)的MTS聚类算法。该文计算MTS的行-行和列-列协方差矩阵的特征向量,从时间和变量两个维度提取特征矩阵;用GMM从概率分布角度对特征矩阵进行聚类。数值实验结果表明,该方法对多变量时间序列具有更好的聚类效果。 展开更多
关键词 二维奇异值分解 高斯混合模型 多变量时间序列聚类
在线阅读 下载PDF
基于改进高斯混合变分自编码器的半监督情感音乐生成 被引量:2
5
作者 胥备 刘桐 《计算机科学》 CSCD 北大核心 2024年第8期281-296,共16页
音乐可以通过序列化的声音信息传递声音内容和情感。情感是音乐所表达的语义中的重要组成部分,因此,音乐生成技术不仅要考虑音乐的结构信息,还应融入情感元素。现有的情感音乐生成技术大多采用基于情感标注的完全监督方法,但音乐领域缺... 音乐可以通过序列化的声音信息传递声音内容和情感。情感是音乐所表达的语义中的重要组成部分,因此,音乐生成技术不仅要考虑音乐的结构信息,还应融入情感元素。现有的情感音乐生成技术大多采用基于情感标注的完全监督方法,但音乐领域缺乏大量标准的情感标注数据集,且情感标签不足以表达音乐的情感特征。针对上述问题,提出了基于改进的高斯混合变分自编码器(Gaussian Mixture Variational Autoencoders,GMVAE)的半监督情感音乐生成方法(Semg-GMVAE),将音乐的节奏特征和调式特征与情感建立联系,同时向GMVAE中引入一种特征解纠缠机制来分别学习这两种特征的潜在变量表示,并对其进行半监督聚类推断。最后通过操纵音乐的特征表示,实现了针对快乐、紧张、悲伤、平静情感的音乐生成与情感转换。同时,针对GMVAE难以区分不同情感类别数据的问题,实验指出其关键原因是GMVAE证据下界中的方差正则项与互信息抑制项使得各类别的高斯分量分散性不足,从而影响学习表示的性能和生成的数据样本的情感质量。因此,Semg-GMVAE对这两项因子分别进行了惩罚和增强,并使用Transformer-XL作为编码器和解码器以提升在长序列音乐上的建模能力。基于真实数据集的实验结果表明,相比现有方法,Semg-GMVAE能够将不同情感的音乐在潜在空间中更好地分离,增强了音乐与情感的关联程度,并且能够有效对不同音乐特征进行解纠缠分离,最后通过改变特征表示更好地实现情感音乐生成或情感切换。 展开更多
关键词 情感音乐生成 半监督生成模型 解纠缠表示学习 高斯混合变分自编码器 Transformer-XL
在线阅读 下载PDF
混合高斯分布的变分贝叶斯学习参数估计 被引量:14
6
作者 徐定杰 沈忱 沈锋 《上海交通大学学报》 EI CAS CSCD 北大核心 2013年第7期1119-1125,共7页
针对常用于非高斯信号或系统建模的包含隐变量的混合高斯分布模型,提出利用一种变分贝叶斯学习算法进行模型的参数估计.该方法采用一个形式较为简单的自由分布,通过不断最大化边缘似然函数的下界,迭代地更新变分参数,直至近似分布足够... 针对常用于非高斯信号或系统建模的包含隐变量的混合高斯分布模型,提出利用一种变分贝叶斯学习算法进行模型的参数估计.该方法采用一个形式较为简单的自由分布,通过不断最大化边缘似然函数的下界,迭代地更新变分参数,直至近似分布足够逼近参数真实的后验分布,从而实现混合高斯分布的参数估计.文中推导了该方法对混合高斯模型参数学习过程.实验表明,变分贝叶斯学习可以有效实现高斯混合模型的多参数估计,相比采样方法更有工程应用前景. 展开更多
关键词 参数估计 混合模型 高斯分布 变分贝叶斯
在线阅读 下载PDF
基于变分贝叶斯学习的光伏功率波动特性研究 被引量:8
7
作者 李芬 李春阳 +2 位作者 闫全全 赵晋斌 段善旭 《电力自动化设备》 EI CSCD 北大核心 2017年第8期99-104,122,共7页
光伏出力波动严重影响电力系统稳定运行。对光伏出力爬坡率进行分析,建立光伏出力爬坡率的高斯混合模型,并用变分贝叶斯学习算法估计模型参数。某光伏电站大量实测数据检验表明,在进行光伏功率波动特性研究方面,在不同时间尺度和天气类... 光伏出力波动严重影响电力系统稳定运行。对光伏出力爬坡率进行分析,建立光伏出力爬坡率的高斯混合模型,并用变分贝叶斯学习算法估计模型参数。某光伏电站大量实测数据检验表明,在进行光伏功率波动特性研究方面,在不同时间尺度和天气类型下,变分贝叶斯学习算法比单一分布及基于最大期望算法的方法具有更好的拟合效果。 展开更多
关键词 光伏功率波动 变分贝叶斯学习 高斯混合模型 爬坡率
在线阅读 下载PDF
基于VMD-DESN-MSGP模型的超短期光伏功率预测 被引量:53
8
作者 王粟 江鑫 +1 位作者 曾亮 常雨芳 《电网技术》 EI CSCD 北大核心 2020年第3期917-926,共10页
光伏功率时间序列受到多种因素影响,呈现出高度的随机性和波动性。针对光伏功率时间序列可预测性低的问题,提出了一种结合变分模态分解(variationalmodal decomposition,VMD)、深度回声状态网络(deepechostate network,DESN)和稀疏高斯... 光伏功率时间序列受到多种因素影响,呈现出高度的随机性和波动性。针对光伏功率时间序列可预测性低的问题,提出了一种结合变分模态分解(variationalmodal decomposition,VMD)、深度回声状态网络(deepechostate network,DESN)和稀疏高斯混合过程专家模型(mixtureof sparse gaussian process experts model,MSGP)的超短期光伏功率预测方法。首先采用VMD将光伏功率时间序列分解为不同的模态,降低数据的非平稳性;为提高模型在超短尺度时序的预测能力,对各模态分别建立DESN预测模型,将各模态预测结果进行求和重构;为进一步提高模型预测精度,对误差的特性进行分析,采用MSGP对预测误差进行补偿;最后将误差的预测值与原功率的预测值相叠加作为最终预测结果。仿真结果表明,该方法在光伏功率时序预测中的效果比传统预测模型更好,有效提高了超短期光伏功率时间序列预测的准确性。 展开更多
关键词 光伏功率预测 时间序列 变分模态分解 深度回声状态网络 稀疏高斯混合过程专家模型
在线阅读 下载PDF
基于混合变分自编码器回归模型的软测量建模方法 被引量:9
9
作者 崔琳琳 沈冰冰 葛志强 《自动化学报》 EI CAS CSCD 北大核心 2022年第2期398-407,共10页
近年来,变分自编码器(Variational auto-encoder,VAE)模型由于在概率数据描述和特征提取能力等方面的优越性,受到了学术界和工业界的广泛关注,并被引入到工业过程监测、诊断和软测量建模等应用中.然而,传统基于VAE的软测量方法使用高斯... 近年来,变分自编码器(Variational auto-encoder,VAE)模型由于在概率数据描述和特征提取能力等方面的优越性,受到了学术界和工业界的广泛关注,并被引入到工业过程监测、诊断和软测量建模等应用中.然而,传统基于VAE的软测量方法使用高斯分布作为潜在变量的分布,限制了其对复杂工业过程数据,尤其是多模态数据的建模能力.为了解决这一问题,本论文提出了一种混合变分自编码器回归模型(Mixture variational autoencoder regression,MVAER),并将其应用于复杂多模态工业过程的软测量建模.具体来说,该方法采用高斯混合模型来描述VAE的潜在变量分布,通过非线性映射将复杂多模态数据映射到潜在空间,学习各模态下的潜在变量,获取原始数据的有效特征表示.同时,建立潜在特征表示与关键质量变量之间的回归模型,实现软测量应用.通过一个数值例子和一个实际工业案例,对所提模型的性能进行了评估,验证了该模型的有效性和优越性. 展开更多
关键词 软测量 变分自编码器 高斯混合模型 混合变分自编码器回归模型 多模态工业过程
在线阅读 下载PDF
基于概率图模型的点集匹配方法研究 被引量:3
10
作者 曲寒冰 王加强 +1 位作者 李彬 王松涛 《自动化学报》 EI CSCD 北大核心 2015年第4期694-710,共17页
在概率图模型框架下提出了一种将回归分析和聚类分析相结合的贝叶斯点集匹配方法,其中,回归分析用来估计两个点集之间的映射函数,而聚类分析用来建立两个点集中点与点之间的对应关系.本文将点集匹配问题表示为一种多层的概率有向图,并... 在概率图模型框架下提出了一种将回归分析和聚类分析相结合的贝叶斯点集匹配方法,其中,回归分析用来估计两个点集之间的映射函数,而聚类分析用来建立两个点集中点与点之间的对应关系.本文将点集匹配问题表示为一种多层的概率有向图,并提出了一种由粗到精的变分逼近算法来估计点集匹配的不确定性;此外,还利用高斯混合模型估计映射函数回归中的异方差噪声和场景点密度估计中离群点的分布;同时,引入转移变量建立起模型点集与场景点集之间的关系,并与离群点混合模型共同对场景点的分布进行估计.实验结果表明,该方法与其他点集匹配算法相比,在鲁棒性和匹配精度方面均达到了较好的效果. 展开更多
关键词 点集匹配 图模型 变分逼近 高斯混合模型 鲁棒估计
在线阅读 下载PDF
不确定环境下移动对象自适应轨迹预测方法 被引量:4
11
作者 夏卓群 胡珍珍 +1 位作者 罗君鹏 陈月月 《计算机研究与发展》 EI CSCD 北大核心 2017年第11期2434-2444,共11页
已有的轨迹预测方法难以对移动对象运动轨迹进行准确地描述,尤其在复杂且不确定的车载自组织网络(vehicular ad hoc network)(也称车联网)环境中.为了解决这一问题,提出基于变分高斯混合模型(variational Gaussian mixture model,VGMM)... 已有的轨迹预测方法难以对移动对象运动轨迹进行准确地描述,尤其在复杂且不确定的车载自组织网络(vehicular ad hoc network)(也称车联网)环境中.为了解决这一问题,提出基于变分高斯混合模型(variational Gaussian mixture model,VGMM)的环境自适应轨迹预测方法 ESATP(environment self-adaptive prediction method based on VGMM).首先,在传统高斯混合模型的基础上使用变分贝叶斯推理近似方法处理混合高斯分布;其次设计变分贝叶斯期望最大化算法学习计算高斯混合模型参数,有效运用参数先验信息得到更高精度预测模型;最后,针对输入轨迹数据特征,使用参数自适应选择算法自动调节参数组合,灵活调整混合高斯分量的个数和轨迹段大小.实验结果表明:所提方法在实验中表现出较高的预测准确性,可应用于车辆移动定位产品中. 展开更多
关键词 环境自适应 变分高斯混合模型 参数自适应选择算法 轨迹预测
在线阅读 下载PDF
带不确定混合噪声系统的变分贝叶斯期望最大滤波算法 被引量:6
12
作者 马天力 张扬 陈超波 《中国惯性技术学报》 EI CSCD 北大核心 2021年第4期475-481,490,共8页
卡尔曼滤波器假设量测噪声为已知统计特性的高斯白噪声,然而系统可能受到不确定随机噪声以及未知有界噪声共同影响,若采用单一滤波策略,则估计结果易出现较大偏差。将两种不确定噪声运用未知参数的高斯混合模型进行表示,提出变分贝叶斯... 卡尔曼滤波器假设量测噪声为已知统计特性的高斯白噪声,然而系统可能受到不确定随机噪声以及未知有界噪声共同影响,若采用单一滤波策略,则估计结果易出现较大偏差。将两种不确定噪声运用未知参数的高斯混合模型进行表示,提出变分贝叶斯期望最大滤波算法。所提方法采用变分贝叶斯最大化方法对量测噪声模型中的超参数进行更新,在得到模型超参数后,利用变分贝叶斯期望算法计算噪声模型的隐变量。对上述过程反复迭代,最终获得系统的状态和协方差。仿真结果表明,相比于传统的卡尔曼滤波算法和联合滤波算法,变分贝叶斯期望最大滤波算法在出现混合不确定噪声时,经纬度定位精度均提高60%以上,提高了导航系统的精确性。 展开更多
关键词 变分贝叶斯 未知但有界噪声 卡尔曼滤波 高斯混合模型 期望最大算法
在线阅读 下载PDF
基于变分自编码高斯混合模型的发电企业串谋智能预警 被引量:5
13
作者 华回春 邓彬 +1 位作者 刘哲 张立峰 《电力系统自动化》 EI CSCD 北大核心 2022年第4期188-196,共9页
随着市场交易规模越来越大,交易数据量增加,结合数据进行串谋分析成为可能。为此,结合发电企业的串谋预警指标体系和无监督的变分自编码高斯混合模型(VAEGMM),实现了对发电企业串谋的智能预警。首先,提出了完善的串谋预警指标体系和详... 随着市场交易规模越来越大,交易数据量增加,结合数据进行串谋分析成为可能。为此,结合发电企业的串谋预警指标体系和无监督的变分自编码高斯混合模型(VAEGMM),实现了对发电企业串谋的智能预警。首先,提出了完善的串谋预警指标体系和详细的指标计算方法。其次,针对指标集具有高维且正负样本不均衡的数据特点,结合异常检测思想提出了VAEGMM。然后,详细阐述了VAEGMM的网络结构,并且重新构建了联合损失函数,使得该网络能够更好地学习得到原始数据的低维表达,从而有助于进行更准确的密度估计。最后,实例测算表明,与其他传统的无监督学习模型相比较,VAEGMM可以更加高效和准确地预警串谋风险。 展开更多
关键词 电力市场 发电企业 智能预警 串谋 变分自编码高斯混合模型
在线阅读 下载PDF
基于VMD-ISSA-KELM的短期光伏发电功率预测 被引量:65
14
作者 商立群 李洪波 +3 位作者 侯亚东 黄辰浩 张建涛 杨雷 《电力系统保护与控制》 EI CSCD 北大核心 2022年第21期138-148,共11页
针对光伏发电功率存在随机性和波动性较强、预测精度较低的问题,提出了一种基于变分模态分解(variational mode decomposition,VMD)和改进松鼠觅食算法优化核极限学习机(improved squirrel search algorithm optimization kernel extrem... 针对光伏发电功率存在随机性和波动性较强、预测精度较低的问题,提出了一种基于变分模态分解(variational mode decomposition,VMD)和改进松鼠觅食算法优化核极限学习机(improved squirrel search algorithm optimization kernel extreme learning machine,ISSA-KELM)的预测模型。首先,利用高斯混合模型(Gaussian mixture model,GMM)将光伏发电功率数据进行聚类,得到不同天气类型下的相似日样本。其次,利用VMD对原始光伏发电功率序列进行平稳化处理,得到若干个规律性较强的子序列。然后,对不同子序列构建KELM预测模型,并使用ISSA优化KELM的核参数和正则化系数。最后,将不同子序列的预测值进行重构,得到最终预测结果。结合实际算例,结果表明:所提出的VMD-ISSA-KELM模型在不同天气条件下均能得到满意的预测精度,且明显优于其他模型,验证了其有效性和优越性。 展开更多
关键词 光伏发电 短期功率预测 相似日 高斯混合模型 变分模态分解 改进松鼠觅食算法 核极限学习机
在线阅读 下载PDF
一种稀少训练数据条件下的语音转换算法 被引量:1
15
作者 徐宁 杨震 《南京邮电大学学报(自然科学版)》 2010年第5期1-7,共7页
提出了一种新的语音说话人转换算法,利用变分贝叶斯方法估计高斯混合模型参数,进而将其应用于语音转换的声道谱参数映射过程,实现说话人身份转换。将变分贝叶斯算法用于模型参数的估计,一方面解决了训练数据量稀少情况下容易使模型产生&... 提出了一种新的语音说话人转换算法,利用变分贝叶斯方法估计高斯混合模型参数,进而将其应用于语音转换的声道谱参数映射过程,实现说话人身份转换。将变分贝叶斯算法用于模型参数的估计,一方面解决了训练数据量稀少情况下容易使模型产生"过拟合"的问题,另一方面通过将模型参数概率化,使得参数估计问题不再是"点估计",而成为了"全局估计",因此在一定程度上提高了模型的精度。主观和客观实验结果表明:将基于变分贝叶斯估计得到的统计模型用于语音声道谱参数的转换,明显提高了在训练数据稀少的情况下系统的鲁棒性,同时转换后语音的音质和说话人个性特征均优于经典的语音转换系统。 展开更多
关键词 变分贝叶斯估计 高斯混合模型 语音转换 声道谱参数 稀少训练数据
在线阅读 下载PDF
一种改进的自适应高斯混合模型实时运动目标检测算法 被引量:5
16
作者 焦宾 吕霞付 +1 位作者 陈勇 李愿 《计算机应用研究》 CSCD 北大核心 2013年第11期3518-3520,共3页
高斯混合模型被广泛应用于摄像机静止条件下运动目标检测的背景建模。针对传统高斯混合模型中对光照变化适应性差及学习率单一等问题,提出了一种光照变化检测及学习率更新的方法,以达到自适应更新背景模型的目的。提出利用颜色直方图匹... 高斯混合模型被广泛应用于摄像机静止条件下运动目标检测的背景建模。针对传统高斯混合模型中对光照变化适应性差及学习率单一等问题,提出了一种光照变化检测及学习率更新的方法,以达到自适应更新背景模型的目的。提出利用颜色直方图匹配算法,通过引入光照变化因子以及模型参数更新计数器对学习率进行自适应的调整,并通过对描述模型分量个数的自适应选择减少了计算时间,增强了系统的实时性。实验结果表明,该方法能快速有效地适应场景的变化,比传统高斯混合模型具有更好的鲁棒性与稳定性。 展开更多
关键词 高斯混合模型 光照变化 自适应 运动目标检测 背景减法
在线阅读 下载PDF
降雨量对OD行程时间可靠性影响分析 被引量:6
17
作者 张琦 陈红 +1 位作者 刘至真 张敏 《交通运输系统工程与信息》 EI CSCD 北大核心 2019年第6期243-249,共7页
为详细研究降雨量对OD行程时间可靠性的影响,基于Uber出行共享的3年美国波士顿10对OD行程时间数据及WeatherUnderground网站提供的小时历史天气,构建了OD行程时间高斯混合模型(GMM).模型参数利用EM法进行求解,K值根据K-S检验后的P值(大... 为详细研究降雨量对OD行程时间可靠性的影响,基于Uber出行共享的3年美国波士顿10对OD行程时间数据及WeatherUnderground网站提供的小时历史天气,构建了OD行程时间高斯混合模型(GMM).模型参数利用EM法进行求解,K值根据K-S检验后的P值(大于0.5000)进行确定,模型分位数利用二分法进行求解.提出一种基于缓冲指数(BI)的新指标缓冲指数变化率(BIVR)作为定量评估指标.结果表明:降雨会降低总体OD行程时间可靠性,降低效果随降雨量提高而增强,但增强效果并不明显;尽管可能性较低,但当降雨处于次要影响因素时可能提高可靠性;小雨天气可视为正常天气;雨天可靠性显著低于正常天气,居民在雨天(除小雨外)出行应预留更多时间. 展开更多
关键词 交通工程 OD行程时间可靠性 降雨量 高斯混合模型 缓冲指数 缓冲指数变化率
在线阅读 下载PDF
基于修正倒谱特征的回放语音检测算法 被引量:2
18
作者 林朗 王让定 +1 位作者 严迪群 李璨 《计算机应用》 CSCD 北大核心 2018年第6期1648-1652,1657,共6页
随着语音技术的发展,以回放语音为代表的各种仿冒语音给声纹认证系统及音频取证技术带来了极大挑战。针对回放语音对声纹认证系统的攻击问题,提出一种基于修正倒谱特征的检测算法。首先,采用变异系数来分析原始语音和回放语音在频域上... 随着语音技术的发展,以回放语音为代表的各种仿冒语音给声纹认证系统及音频取证技术带来了极大挑战。针对回放语音对声纹认证系统的攻击问题,提出一种基于修正倒谱特征的检测算法。首先,采用变异系数来分析原始语音和回放语音在频域上的差异;然后,有针对性地将提取梅尔倒谱系数(MFCC)过程中的Mel滤波器组换成由linear滤波器和逆Mel滤波器组合的新滤波器组,进而得到基于新滤波器组的修正倒谱特征;最后,使用高斯混合模型(GMM)作为分类器进行分类判别。实验结果表明,修正的倒谱特征能够有效地检测回放语音,其等错误率约为3.45%。 展开更多
关键词 变异系数 高斯混合模型 回放语音检测 梅尔倒谱系数 滤波器组
在线阅读 下载PDF
基于变分贝叶斯的轴承故障诊断方法 被引量:15
19
作者 王岩 罗倩 邓辉 《计算机科学》 CSCD 北大核心 2019年第11期323-327,共5页
滚动轴承是旋转机械结构中常用的零件,如果发生故障,会造成极大的危害。随着大数据时代的到来,现代智能诊断方法已被广泛应用到轴承故障诊断中。针对目前智能诊断方法存在的问题,将统计模型引入轴承故障诊断中,提出了基于变分贝叶斯的... 滚动轴承是旋转机械结构中常用的零件,如果发生故障,会造成极大的危害。随着大数据时代的到来,现代智能诊断方法已被广泛应用到轴承故障诊断中。针对目前智能诊断方法存在的问题,将统计模型引入轴承故障诊断中,提出了基于变分贝叶斯的轴承故障诊断方法。该方法对轴承振动信号进行局部特征尺度分解,得到若干个内禀尺度分量,并分别提取时域特征组成特征集,使用特征集训练产生基于变分贝叶斯的混合多维高斯分布模型,通过计算不同轴承故障的概率实现故障诊断。实验结果表明,所提方法的诊断正确率达到99.6%,与基于支持向量机的轴承诊断方法相比,在所组成的特征集上诊断正确率最高提升了39.6%。文中提出的方法能够全面且有效地诊断滚动轴承故障,对高维复杂的故障数据也有很好的诊断效果。 展开更多
关键词 变分贝叶斯 轴承故障诊断 局部特征尺度分解 高斯混合模型
在线阅读 下载PDF
层次变分高斯混合模型与主多项式分析的故障检测策略 被引量:4
20
作者 李元 杨东昇 +1 位作者 赵丽颖 张成 《化工学报》 EI CAS CSCD 北大核心 2021年第3期1616-1626,共11页
针对多模态工业过程中模态数量难以确定问题,提出一种层次变分高斯混合模型(hierarchical variational Gaussian mixture model,HVGMM)。在此基础上,使用主多项式分析(principal polynomial analysis,PPA)用于多模态非线性过程故障检测... 针对多模态工业过程中模态数量难以确定问题,提出一种层次变分高斯混合模型(hierarchical variational Gaussian mixture model,HVGMM)。在此基础上,使用主多项式分析(principal polynomial analysis,PPA)用于多模态非线性过程故障检测。首先,变分贝叶斯高斯混合模型(variational Bayesian Gaussian mixture model,VBGMM)作为初始模型用于分解过程数据得到工作模态的初始数量,将过程按初始数量分解为多个子块;其次,应用包含多个局部模型的VBGMM将各子块分解为附属子块,并利用附属子块的均值、精度等信息对VBGMM进行重构;然后,将重构后的VBGMM作为初始模型再次用于分解原始过程数据,重复上述步骤直至重构VBGMM无法分解各子块时停止;最后,分别在各附属子块中建立局部PPA模型,并在每个局部模型中计算T2和SPE统计量进行故障检测。将该方法应用于数值例子和Tennessee Eastman(TE)化工过程,并将仿真结果与主元分析(principal component analysis,PCA)、PPA进行对比,验证了所提出方法的有效性。 展开更多
关键词 主元分析 变分贝叶斯高斯混合模型 故障检测 过程控制 多模态过程 参数估值
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部