针对高精度交流调速系统,将分数阶微积分理论、内模控制、模糊控制和比例积分微分(proportional integral differential,PID)控制相结合,提出了一种模糊分数阶内模PI-νDa+ν控制器。首先,考虑到分数阶微积分的优良特性,将其引入交流调...针对高精度交流调速系统,将分数阶微积分理论、内模控制、模糊控制和比例积分微分(proportional integral differential,PID)控制相结合,提出了一种模糊分数阶内模PI-νDa+ν控制器。首先,考虑到分数阶微积分的优良特性,将其引入交流调速系统的内模PID控制器中,得到了一种分数阶内模PI-νDa+ν控制器,该控制器包含3个可调参数。然后,通过阶跃响应分析了控制器参数对系统性能的影响,并根据分析结果设计了模糊控制器,实现了控制器参数的智能整定,克服了分数阶控制器参数整定困难的不足。实验结果表明,模糊分数阶内模PI-νDa+ν控制器可以使系统具有良好的动态响应、扰动抑制特性和克服参数摄动的鲁棒性。展开更多
This paper investigates the problem of robust output regulation control with prospected transient property for strict feedback systems.By employing the internal model principle,the robust output regulation problem wit...This paper investigates the problem of robust output regulation control with prospected transient property for strict feedback systems.By employing the internal model principle,the robust output regulation problem with a prospected property can be transformed to a robust stabilization problem with a new output constraint.Then,by constructing the speed function and adopting barrier Lyapunov function technique,the dynamic feedback controller can be designed not only to drive error output of the closed-loop system entering into a prescribed performance bound within a given finite time,but also to achieve that the error output converges to zero asymptotically.The effectiveness of the results is illustrated by a simulation example.展开更多
文摘针对高精度交流调速系统,将分数阶微积分理论、内模控制、模糊控制和比例积分微分(proportional integral differential,PID)控制相结合,提出了一种模糊分数阶内模PI-νDa+ν控制器。首先,考虑到分数阶微积分的优良特性,将其引入交流调速系统的内模PID控制器中,得到了一种分数阶内模PI-νDa+ν控制器,该控制器包含3个可调参数。然后,通过阶跃响应分析了控制器参数对系统性能的影响,并根据分析结果设计了模糊控制器,实现了控制器参数的智能整定,克服了分数阶控制器参数整定困难的不足。实验结果表明,模糊分数阶内模PI-νDa+ν控制器可以使系统具有良好的动态响应、扰动抑制特性和克服参数摄动的鲁棒性。
基金supported by the National Natural Science Foundation of China(61873219)。
文摘This paper investigates the problem of robust output regulation control with prospected transient property for strict feedback systems.By employing the internal model principle,the robust output regulation problem with a prospected property can be transformed to a robust stabilization problem with a new output constraint.Then,by constructing the speed function and adopting barrier Lyapunov function technique,the dynamic feedback controller can be designed not only to drive error output of the closed-loop system entering into a prescribed performance bound within a given finite time,but also to achieve that the error output converges to zero asymptotically.The effectiveness of the results is illustrated by a simulation example.