期刊文献+
共找到1,713篇文章
< 1 2 86 >
每页显示 20 50 100
Equilibrium Strategies in M/M/1 Retrial Queues with Variable Service Rate
1
作者 LIU Yuanyuan YAN Zhaozeng YANG Qin 《应用概率统计》 北大核心 2025年第3期448-466,共19页
We consider a single server constant retrial queue,in which a state-dependent service policy is used to control the service rate.Customer arrival follows Poisson process,while service time and retrial time are exponen... We consider a single server constant retrial queue,in which a state-dependent service policy is used to control the service rate.Customer arrival follows Poisson process,while service time and retrial time are exponential distributions.Whenever the server is available,it admits the retrial customers into service based on a first-come first-served rule.The service rate adjusts in real-time based on the retrial queue length.An iterative algorithm is proposed to numerically solve the personal optimal problem in the fully observable scenario.Furthermore,we investigate the impact of parameters on the social optimal threshold.The effectiveness of the results is illustrated by two examples. 展开更多
关键词 variable service rate retrial queues real-time adaptability equilibrium strategies algorithm
在线阅读 下载PDF
An improved multi-objective optimization algorithm for solving flexible job shop scheduling problem with variable batches 被引量:3
2
作者 WU Xiuli PENG Junjian +2 位作者 XIE Zirun ZHAO Ning WU Shaomin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第2期272-285,共14页
In order to solve the flexible job shop scheduling problem with variable batches,we propose an improved multiobjective optimization algorithm,which combines the idea of inverse scheduling.First,a flexible job shop pro... In order to solve the flexible job shop scheduling problem with variable batches,we propose an improved multiobjective optimization algorithm,which combines the idea of inverse scheduling.First,a flexible job shop problem with the variable batches scheduling model is formulated.Second,we propose a batch optimization algorithm with inverse scheduling in which the batch size is adjusted by the dynamic feedback batch adjusting method.Moreover,in order to increase the diversity of the population,two methods are developed.One is the threshold to control the neighborhood updating,and the other is the dynamic clustering algorithm to update the population.Finally,a group of experiments are carried out.The results show that the improved multi-objective optimization algorithm can ensure the diversity of Pareto solutions effectively,and has effective performance in solving the flexible job shop scheduling problem with variable batches. 展开更多
关键词 flexible job shop variable batch inverse scheduling multi-objective evolutionary algorithm based on decomposition a batch optimization algorithm with inverse scheduling
在线阅读 下载PDF
Adaptive tracking algorithm based on 3D variable turn model 被引量:1
3
作者 Xiaohua Nie Fuming Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第5期851-860,共10页
Satisfactory results cannot be obtained when three-dimensional (3D) targets with complex maneuvering characteristics are tracked by the commonly used two-dimensional coordinated turn (2DCT) model. To address the probl... Satisfactory results cannot be obtained when three-dimensional (3D) targets with complex maneuvering characteristics are tracked by the commonly used two-dimensional coordinated turn (2DCT) model. To address the problem of 3D target tracking with strong maneuverability, on the basis of the modified three-dimensional variable turn (3DVT) model, an adaptive tracking algorithm is proposed by combining with the cubature Kalman filter (CKF) in this paper. Through ideology of real-time identification, the parameters of the model are changed to adjust the state transition matrix and the state noise covariance matrix. Therefore, states of the target are matched in real-time to achieve the purpose of adaptive tracking. Finally, four simulations are analyzed in different settings by the Monte Carlo method. All results show that the proposed algorithm can update parameters of the model and identify motion characteristics in real-time when targets tracking also has a better tracking accuracy. 展开更多
关键词 maneuvering target tracking adaptive tracking algorithm modified three-dimensional variable turn (3DVT) model cubature Kalman filter (CKF)
在线阅读 下载PDF
Neural Network Predictive Control of Variable-pitch Wind Turbines Based on Small-world Optimization Algorithm 被引量:8
4
作者 WANG Shuangxin LI Zhaoxia LIU Hairui 《中国电机工程学报》 EI CSCD 北大核心 2012年第30期I0015-I0015,17,共1页
通过将混沌映射用于产生初始节点集和进行算子构造,提出一种新的基于实数编码的混沌小世界优化算法。采用4种算法对多例复杂函数的优化问题进行仿真试验,表明所提算法具有能够有效避免陷入局部极小值、快速搜索到最优值的能力。将上述... 通过将混沌映射用于产生初始节点集和进行算子构造,提出一种新的基于实数编码的混沌小世界优化算法。采用4种算法对多例复杂函数的优化问题进行仿真试验,表明所提算法具有能够有效避免陷入局部极小值、快速搜索到最优值的能力。将上述方法应用于变桨距风电机组启动并网时的转速控制,提出一种基于混沌小世界优化算法的神经网络预测控制策略,其预测模型由基于现场数据的神经网络模型建立。仿真与实际测试结果表明,该系统可以根据风速扰动提前预测电机的转速变化,使控制器超前动作,保证系统输出跟踪参考轨迹的方向稳步改变,确保风电机组平稳并网。 展开更多
关键词 优化算法 小世界 风力发电机组 预测控制 神经网络 变桨距 实时编码 混沌映射
在线阅读 下载PDF
Hybrid Genetic Algorithm for Engineering Structural Optimization with Dis crete Variables
5
作者 WEI Ying-zi 1,2,3, ZHAO Ming-yang 1 (1. Robotics Laboratory, Shenyang Institute of Automation, Chinese Acad emy of Science, Shenyang 110016, China 2. Shenyang Institute of Technology , Shenyang 110016, China 3. Graduate School of the Chinese Academy of Scienc es, Beijing 100039, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期178-,共1页
Aiming at the phenomenon of discrete variables whic h generally exists in engineering structural optimization, a novel hybrid genetic algorithm (HGA) is proposed to directly search the optimal solution in this pape r.... Aiming at the phenomenon of discrete variables whic h generally exists in engineering structural optimization, a novel hybrid genetic algorithm (HGA) is proposed to directly search the optimal solution in this pape r. The imitative full-stress design method (IFS) was presented for discrete struct ural optimum design subjected to multi-constraints. To reach the imitative full -stress state for dangerous members was the target of IFS through iteration. IF S is integrated in the GA. The basic idea of HGA is to divide the optimization t ask into two complementary parts. The coarse, global optimization is done by the GA while local refinement is done by IFS. For instance, every K generations, th e population is doped with a locally optimal individual obtained from IFS. Both methods run in parallel. All or some of individuals are continuously used as initial values for IFS. The locally optimized individuals are re-implanted into the current generation in the GA. From some numeral examples, hybridizatio n has been discovered as enormous potential for improvement of genetic algorit hm. Selection is the component which guides the HGA to the solution by preferring in dividuals with high fitness over low-fitted ones. Selection can be deterministi c operation, but in most implementations it has random components. "Elite surviv al" is introduced to avoid that the observed best-fitted individual dies out, j ust by selecting it for the next generation without any random experiments. The individuals of population are competitive only in the same generation. There exists no competition among different generations. So HGA may be permitted to h ave different evaluation criteria for different generations. Multi-Selectio n schemes are adopted to avoid slow refinement since the individuals have si milar fitness values in the end phase of HGA. The feasibility of this method is tested with examples of engineering design wit h discrete variables. Results demonstrate the validity of HGA. 展开更多
关键词 hybrid genetic algorithm discrete variables o ptimization design imitative full-stress
在线阅读 下载PDF
Optimal variable structure control with sliding modes for unstable processes 被引量:4
6
作者 KUMAR Satyendra AJMERI Moina 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第10期3147-3158,共12页
In this work,a variable structure control(VSC)technique is proposed to achieve satisfactory robustness for unstable processes.Optimal values of unknown parameters of VSC are obtained using Whale optimization algorithm... In this work,a variable structure control(VSC)technique is proposed to achieve satisfactory robustness for unstable processes.Optimal values of unknown parameters of VSC are obtained using Whale optimization algorithm which was recently reported in literature.Stability analysis has been done to verify the suitability of the proposed structure for industrial processes.The proposed control strategy is applied to three different types of unstable processes including non-minimum phase and nonlinear systems.A comparative study ensures that the proposed scheme gives superior performance over the recently reported VSC system.Furthermore,the proposed method gives satisfactory results for a cart inverted pendulum system in the presence of external disturbance and noise. 展开更多
关键词 variable structure control sliding mode control Whale optimization algorithm ROBUSTNESS non-linear system
在线阅读 下载PDF
Suppression of thermal postbuckling and nonlinear panel flutter motions of variable stiffness composite laminates using piezoelectric actuators 被引量:2
7
作者 TAO Ji-xiao YI Sheng-hui +1 位作者 DENG Ya-jie HE Xiao-qiao 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第12期3757-3777,共21页
Variable stiffness composite laminates(VSCLs)are promising in aerospace engineering due to their designable material properties through changing fiber angles and stacking sequences.Aiming to control the thermal postbu... Variable stiffness composite laminates(VSCLs)are promising in aerospace engineering due to their designable material properties through changing fiber angles and stacking sequences.Aiming to control the thermal postbuckling and nonlinear panel flutter motions of VSCLs,a full-order numerical model is developed based on the linear quadratic regulator(LQR)algorithm in control theory,the classical laminate plate theory(CLPT)considering von Kármán geometrical nonlinearity,and the first-order Piston theory.The critical buckling temperature and the critical aerodynamic pressure of VSCLs are parametrically investigated.The location and shape of piezoelectric actuators for optimal control of the dynamic responses of VSCLs are determined through comparing the norms of feedback control gain(NFCG).Numerical simulations show that the temperature field has a great effect on aeroelastic tailoring of VSCLs;the curvilinear fiber path of VSCLs can significantly affect the optimal location and shape of piezoelectric actuator for flutter suppression;the unstable panel flutter and the thermal postbuckling deflection can be suppressed effectively through optimal design of piezoelectric patches. 展开更多
关键词 active control finite element method linear quadratic regulator algorithm nonlinear flutter thermal postbuckling variable stiffness composite laminates
在线阅读 下载PDF
Analysis and optimization of variable depth increments in sheet metal incremental forming 被引量:1
8
作者 李军超 王宾 周同贵 《Journal of Central South University》 SCIE EI CAS 2014年第7期2553-2559,共7页
A method utilizing variable depth increments during incremental forming was proposed and then optimized based on numerical simulation and intelligent algorithm.Initially,a finite element method(FEM) model was set up a... A method utilizing variable depth increments during incremental forming was proposed and then optimized based on numerical simulation and intelligent algorithm.Initially,a finite element method(FEM) model was set up and then experimentally verified.And the relation between depth increment and the minimum thickness tmin as well as its location was analyzed through the FEM model.Afterwards,the variation of depth increments was defined.The designed part was divided into three areas according to the main deformation mechanism,with Di(i=1,2) representing the two dividing locations.And three different values of depth increment,Δzi(i=1,2,3) were utilized for the three areas,respectively.Additionally,an orthogonal test was established to research the relation between the five process parameters(D and Δz) and tmin as well as its location.The result shows that Δz2 has the most significant influence on the thickness distribution for the corresponding area is the largest one.Finally,a single evaluating indicator,taking into account of both tmin and its location,was formatted with a linear weighted model.And the process parameters were optimized through a genetic algorithm integrated with an artificial neural network based on the evaluating index.The result shows that the proposed algorithm is satisfactory for the optimization of variable depth increment. 展开更多
关键词 incremental forming numerical simulation variable depth increment genetic algorithm OPTIMIZATION
在线阅读 下载PDF
Fuzzy identification of nonlinear dynamic system based on selection of important input variables 被引量:1
9
作者 LYU Jinfeng LIU Fucai REN Yaxue 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第3期737-747,共11页
Input variables selection(IVS) is proved to be pivotal in nonlinear dynamic system modeling. In order to optimize the model of the nonlinear dynamic system, a fuzzy modeling method for determining the premise structur... Input variables selection(IVS) is proved to be pivotal in nonlinear dynamic system modeling. In order to optimize the model of the nonlinear dynamic system, a fuzzy modeling method for determining the premise structure by selecting important inputs of the system is studied. Firstly, a simplified two stage fuzzy curves method is proposed, which is employed to sort all possible inputs by their relevance with outputs, select the important input variables of the system and identify the structure.Secondly, in order to reduce the complexity of the model, the standard fuzzy c-means clustering algorithm and the recursive least squares algorithm are used to identify the premise parameters and conclusion parameters, respectively. Then, the effectiveness of IVS is verified by two well-known issues. Finally, the proposed identification method is applied to a realistic variable load pneumatic system. The simulation experiments indi cate that the IVS method in this paper has a positive influence on the approximation performance of the Takagi-Sugeno(T-S) fuzzy modeling. 展开更多
关键词 Takagi-Sugeno(T-S)fuzzy modeling input variable selection(IVS) fuzzy identification fuzzy c-means clustering algorithm
在线阅读 下载PDF
Dynamic assets allocation based on market microstructure model with variable-intensity jumps
10
作者 覃业梅 彭辉 《Journal of Central South University》 SCIE EI CAS 2014年第3期993-1002,共10页
In order to characterizc large fluctuations of the financial markets and optimize financial portfolio, a new dynamic asset control strategy was proposed in this work. Firstly, a random process item with variable jump ... In order to characterizc large fluctuations of the financial markets and optimize financial portfolio, a new dynamic asset control strategy was proposed in this work. Firstly, a random process item with variable jump intensity was introduced to the existing discrete microstructure model to denote large price fluctuations. The nonparametric method of LEE was used for detecting jumps. Further, the extended Kalman filter and the maximum likelihood method were applied to discrete microstructure modeling and the estimation of two market potential variables: market excess demand and liquidity. At last, based on the estimated variables, an assets allocation strategy using evolutionary algorithm was designed to control the weight of each asset dynamically. Case studies on IBM Stock show that jumps with variable intensity are detected successfully, and the assets allocation strategy may effectively keep the total assets growth or prevent assets loss at the stochastic financial market. 展开更多
关键词 discrete microstrucmre model (DMSM) variable jump intensity evolutionary algorithm (EA) asset allocation excess demand market liquidity
在线阅读 下载PDF
重载铁路小半径曲线钢轨型面非对称优化设计 被引量:1
11
作者 丁旺才 张建栋 +3 位作者 葛菲元 吴少培 李得洋 李国芳 《振动与冲击》 北大核心 2025年第6期272-281,共10页
为研究重载铁路小半径曲线钢轨型面优化问题,以外、内轨钢轨磨耗面积及滚动圆半径差为优化目标,在考虑减缓磨耗的同时对车辆通曲能力进行优化,运用克里格理论拟合目标函数得到相应的数学模型;通过非均匀有理样条曲线对钢轨廓形进行参数... 为研究重载铁路小半径曲线钢轨型面优化问题,以外、内轨钢轨磨耗面积及滚动圆半径差为优化目标,在考虑减缓磨耗的同时对车辆通曲能力进行优化,运用克里格理论拟合目标函数得到相应的数学模型;通过非均匀有理样条曲线对钢轨廓形进行参数化描述,结合第二代非支配遗传算法对目标函数进行求解得到优化目标对应的优化廓形,并从优化型面的磨耗性能、动力学性能、钢轨滚动接触疲劳及车轮磨耗性能等方面进行评价。结果表明:设计变量的范围对目标函数影响显著,优化设计变量范围后求解得到的最优廓形在磨耗面积和滚动圆半径差上的表现均优于初始设计变量范围对应的最优廓形;优化型面在磨耗指数、磨耗功及钢轨磨耗量方面均优于初始CN75型面,在轮对横移量等动力学性能方面也均优于初始CN75型面,可以更好保证列车运行的安全性和稳定性;在钢轨滚动接触疲劳方面,优化型面均优于初始CN75型面,其中右轨的优化效果最为显著;在车轮磨耗方面,优化型面与初始CN75型面对车轮的磨耗影响差异较小,外、内轨优化型面整体磨耗量较初始CN75型面有微幅减少,优化型面车轮磨耗性能优于初始CN75型面。 展开更多
关键词 轮轨磨耗 小半径曲线钢轨型面优化 设计变量影响效应 第二代非支配遗传算法 钢轨疲劳损伤
在线阅读 下载PDF
基于MIC-NNG-LSTM的有机废液焚烧SCR入口NO_(x)浓度动态预测
12
作者 李艳 史艳华 +2 位作者 戴庆瑜 刘嫣 马晓燕 《工程科学与技术》 北大核心 2025年第3期21-30,共10页
针对高盐有机废液焚烧及烟气处理过程中普遍存在的延迟、非线性和动态特性,提出一种基于自适应变量选择与长短期记忆神经网络(MIC-NNG-LSTM)的动态预测方法,对选择性催化还原法(SCR)脱硝塔入口NO_(x)浓度进行预测,解决当工况发生变化时... 针对高盐有机废液焚烧及烟气处理过程中普遍存在的延迟、非线性和动态特性,提出一种基于自适应变量选择与长短期记忆神经网络(MIC-NNG-LSTM)的动态预测方法,对选择性催化还原法(SCR)脱硝塔入口NO_(x)浓度进行预测,解决当工况发生变化时,脱硝系统不能及时调整喷氨量的问题。该预测方法在传统长短期记忆神经网络(LSTM)的基础上,利用最大互信息系数(MIC)法确定相关辅助变量的延迟时间,以全面捕捉变量之间的动态关系。其次,利用MIC可以反映各输入变量相对于目标变量的重要程度,结合能够收缩变量系数的非负绞杀(NNG)算法,设计MIC-NNG算法来压缩LSTM网络的输入节点数,剔除冗余变量,实现辅助变量的自适应选择。最后,将包含延迟时间的辅助变量集作为LSTM网络的输入变量集,从而建立SCR入口NO_(x)浓度动态预测模型。并与LSTM、MICLSTM、NNG-LSTM 3种预测SCR入口NO_(x)浓度的方法进行实验对比,浓度预测精度可达到93%,均方根误差减小为约1.5 mg/Nm^(3)。结果表明:通过引入输入变量的延迟时间特性,能够更好地体现各变量之间的动态关系;MIC-NNG算法相对于NNG算法能更准确地选择输入变量以缩短模型预测时间,提高预测精度和泛化能力。基于MIC-NNG算法和LSTM网络的动态预测模型综合考虑了有机废液焚烧过程中变量的延迟特性和各参数之间的动态时序关系,可以为降低NO_(x)排放量提供新思路。 展开更多
关键词 有机废液 动态预测 变量选择 长短期记忆神经网络 MIC-NNG算法
在线阅读 下载PDF
基于近红外光谱的灌浆期玉米籽粒水分定量分析通用模型
13
作者 王雪 张广月 +3 位作者 马铁民 赵肖宇 刘金明 衣淑娟 《农业工程学报》 北大核心 2025年第8期291-300,共10页
玉米育种过程中,灌浆期籽粒含水率检测时,通常需要脱粒,采集穗中间200粒为检测样本。为了保护亲本,避免破坏性检测,该研究提出一种基于近红外光谱的灌浆期玉米籽粒水分定量分析通用模型,用于灌浆期玉米籽粒水分的田间原位检测。首先构建... 玉米育种过程中,灌浆期籽粒含水率检测时,通常需要脱粒,采集穗中间200粒为检测样本。为了保护亲本,避免破坏性检测,该研究提出一种基于近红外光谱的灌浆期玉米籽粒水分定量分析通用模型,用于灌浆期玉米籽粒水分的田间原位检测。首先构建GA-IRIV-DS光谱数据处理策略。利用遗传算法(genetic algorithm,GA)和迭代保留信息变量(iterative retention of information variables,IRIV)二次波长筛选方法,提取光谱数据中有效的水分变量信息,减小特征空间维度的同时提高模型预测精度;再结合直接校正算法(direct standardization,DS),降低预测样本与建模样本的差异性,将玉米灌浆期穗尖部籽粒光谱数据校正为中间200籽粒的光谱,使水分定量分析模型能够具备中间200籽粒和穗尖部籽粒2种检测样本的通用性。在GA-IRIV-DS光谱数据处理策略的基础上,构建基于偏最小二乘法(partial lpeast squares regression,PLSR)的水分定量分析通用模型。经过验证,GA-IRIV-DS光谱数据处理策略校正后的光谱差异性降低了59.4%。为了进一步验证GA-IRIV-DS光谱数据处理策略的有效性,分析了GA+IRIVN组合波长筛选提取光谱特征,并分别与全光谱、多种典型波长筛选方法结合DS方法构建基于偏最小二乘法(PLSR)的水分定量分析模型结果相比较。试验结果表明,两种样本预测集GA-IRIVN-DS-PLSR模型效果均优于全光谱和其他模型,中间籽粒样本和穗尖部籽粒样本的预测决定系数(R^(2))达到了0.9715和0.9012,均方根误差(RMSEP)较全光谱下降了80.10%和64.60%。证明基于GA-IRIVN-DS光谱数据处理策略建立的近红外光谱水分定量分析模型具有一定泛化能力,可以为玉米育种过程中,减少检测过程中的样本破坏和提高检测效率提供可行的参考方法。 展开更多
关键词 近红外光谱 遗传算法 迭代保留信息变量 玉米籽粒水分 定量分析
在线阅读 下载PDF
基于分段三稳态势函数的随机共振信号滤波算法
14
作者 刘宝 孙志坚 +1 位作者 高天琳 李楼楼 《中国石油大学学报(自然科学版)》 北大核心 2025年第4期144-152,共9页
针对井下强噪声环境下声波通讯信号难以有效提取的问题,在三稳态随机共振的基础上结合分段双稳态势函数,提出一种分段三稳态随机共振的信号滤波算法。针对传统随机共振输出信噪比低、参数耦合严重及输出饱和等问题,构造分段三稳态非线... 针对井下强噪声环境下声波通讯信号难以有效提取的问题,在三稳态随机共振的基础上结合分段双稳态势函数,提出一种分段三稳态随机共振的信号滤波算法。针对传统随机共振输出信噪比低、参数耦合严重及输出饱和等问题,构造分段三稳态非线性系统模型,通过独立调节势阱深度、势阱位置及势垒陡峭度,诱导最佳三稳态随机共振;以输出信噪比为标准,通过人工鱼群算法(AFSA)对分段三稳态非线性系统模型参数进行寻优,改善分段三稳态随机共振的信号滤波效果。结果表明,分段三稳态随机共振的信号滤波算法相比其他几种经典算法滤波效果更强,提高了处理井下声波信号的输出信噪比,为井下声波通讯信号的提取提供一种更优方法。 展开更多
关键词 信号处理 随机共振 分段势函数 频移变尺度 人工鱼群算法
在线阅读 下载PDF
基于辅助变量和GARBF神经网络的黄河流域土壤镉空间分布预测
15
作者 张成才 郑文豪 +3 位作者 闫亚宁 孙雨田 刘威 王永辉 《土壤》 北大核心 2025年第2期423-429,共7页
为了准确掌握黄河流域土壤镉的空间分布,以环境因子和土壤理化因子的不同组合作为辅助变量,利用遗传算法(GA)优化径向基函数(RBF)神经网络对黄河流域土壤镉的空间分布进行了预测,并与回归克里格、RBF神经网络预测精度进行了对比,探究了... 为了准确掌握黄河流域土壤镉的空间分布,以环境因子和土壤理化因子的不同组合作为辅助变量,利用遗传算法(GA)优化径向基函数(RBF)神经网络对黄河流域土壤镉的空间分布进行了预测,并与回归克里格、RBF神经网络预测精度进行了对比,探究了土壤理化因子和遗传算法对神经网络模型预测精度的影响。结果表明:(1)加入土壤理化因子(有机质含量、p H、CEC)可以提高神经网络模型的预测精度,基于环境因子和土壤理化因子的GARBF神经网络模型均方根误差(RMSE)、平均绝对误差(MAE)、平均相对误差(MRE)较仅基于环境因子的GARBF神经网络模型分别减小0.058 mg/kg、0.033 mg/kg、4.4个百分点;(2)遗传算法可以提高神经网络模型的预测精度,基于环境因子和土壤理化因子的GARBF神经网络模型的RMSE、MAE、MRE较基于环境因子和土壤理化数据的RBF神经网络模型分别减小0.009mg/kg、0.005mg/kg、0.6个百分点;(3)同时加入环境因子和土壤理化因子并使用遗传算法对神经网络模型进行优化得到的预测结果最优,基于环境因子和土壤理化因子的GARBF神经网络模型能用于黄河流域土壤镉的空间分布预测研究。 展开更多
关键词 土壤理化因子 遗传算法 神经网络 辅助变量 空间插值
在线阅读 下载PDF
考虑可变编组和均衡检修的动车组运用计划编制优化研究
16
作者 户佐安 张文豪 +2 位作者 周甲明 黄鑫磊 张玉召 《北京交通大学学报》 北大核心 2025年第2期14-24,共11页
针对动车组(Electric Multiple Units,EMU)日常运用与高级修协调失衡问题,首先,从自动化编制的角度出发,阐明可变编组模式动车组接续过程,探究动车组运用计划与高级修周期的内在关系,并在此基础上,将动车组高级修均衡性及各项费用综合... 针对动车组(Electric Multiple Units,EMU)日常运用与高级修协调失衡问题,首先,从自动化编制的角度出发,阐明可变编组模式动车组接续过程,探究动车组运用计划与高级修周期的内在关系,并在此基础上,将动车组高级修均衡性及各项费用综合纳入优化目标,同时考虑检修能力、运行图、接续作业等约束条件,建立考虑可变编组和均衡检修的动车组运用检修一体化优化编制模型.然后,将启发式规则加入可行解生成算法中,结合模拟退火算法的寻优策略,设计出用于求解动车组运用计划的算法,以优化模型的求解过程.最后,以武广线部分运行图数据为背景进行算例验证.研究结果表明:可变编组模式比固定编组模式所需动车组数量减少16.9%,一级修检修次数减少18.7%,有效降低了综合运营成本.在考虑均衡检修条件后,动车组运用方案中动车组高级修均衡度上升了65%,有效缓解了实际运营中动车组集中送修,检修基地检修能力不足的问题,提高了动车组运用的组织水平. 展开更多
关键词 动车组 运用计划 可变编组 均衡检修 模拟退火算法
在线阅读 下载PDF
带有充电约束的多AGV柔性作业车间调度
17
作者 李晓辉 资湖海 +3 位作者 徐坷鑫 牛樱清 赵毅 董媛 《计算机工程》 北大核心 2025年第4期314-326,共13页
在制造单元不再唯一且加工时间不确定的柔性作业车间调度中,多自动导向小车(AGV)发挥着重要作用。然而当AGV执行任务时间过长、消耗电量较多时,充电事件成为必须考虑的因素。该研究旨在解决考虑电池约束条件下的多AGV的柔性车间作业调... 在制造单元不再唯一且加工时间不确定的柔性作业车间调度中,多自动导向小车(AGV)发挥着重要作用。然而当AGV执行任务时间过长、消耗电量较多时,充电事件成为必须考虑的因素。该研究旨在解决考虑电池约束条件下的多AGV的柔性车间作业调度问题。综合考虑制造单元加工时间、AGV小车搬运时间以及AGV小车充电情况等约束条件,以优化最大完工时间为目标。针对此问题建立数学模型,将文化基因算法和自适应变邻域搜索算法相结合提出一种混合文化基因算法。该算法采用文化基因算法作为框架,并引入基于析取图的关键路径方法,以解决制造单元和AGV小车滞空率高的问题。同时,为了提高算法的寻优能力,避免陷入局部最优解,利用自适应变邻域搜索对当前迭代中的最优解进行改进。针对模型特点,设计多种打破重组的邻域结构,以实现算法求解最优值的目标。仿真实验结果表明,该算法具有寻找最优解的能力且整体性能优于所对比的算法,验证了该算法的有效性。 展开更多
关键词 柔性作业车间调度 自动导向小车 充电 基因算法 自适应变邻域搜索算法
在线阅读 下载PDF
基于不同算法渐变式液压缓冲器的优化研究
18
作者 尤小梅 侯晓冬 《组合机床与自动化加工技术》 北大核心 2025年第6期176-181,共6页
以履带车辆渐变节流式液压缓冲器为研究对象,为了提高其缓冲性能,建立缓冲过程数学模型,利用MATLAB数值仿真分析了结构参数对缓冲特性的影响。以最大缓冲效率为优化目标,以高压腔半径、阻尼孔半径、长度及节流杆初始半径为变量建立了缓... 以履带车辆渐变节流式液压缓冲器为研究对象,为了提高其缓冲性能,建立缓冲过程数学模型,利用MATLAB数值仿真分析了结构参数对缓冲特性的影响。以最大缓冲效率为优化目标,以高压腔半径、阻尼孔半径、长度及节流杆初始半径为变量建立了缓冲器优化模型,分别采用蚁群算法、萤火虫优化算法及麻雀搜索算法进行优化。结果表明,相较于原有结构的渐变节流式液压缓冲器,在3种算法优化后,缓冲效率得到提升,缓冲力及压强差的峰值显著下降,其中麻雀搜索算法与其他算法相比,在缓冲器的组合优化中收敛速度更快,优化效果也更为理想。 展开更多
关键词 渐变节流式液压缓冲器 数值仿真 缓冲效率 组合优化 优化算法
在线阅读 下载PDF
基于阶域线性峭度的变转速驱动轮损伤频带定位分析
19
作者 张宏 李巨才 +2 位作者 王景宇 田利晨 张晨 《振动与冲击》 北大核心 2025年第7期232-238,共7页
掘进履带行驶系统作业于煤矿巷道恶劣地形和复杂环境中,其关键承载部件驱动轮长期承受不均匀载荷,导致轮齿损伤甚至断裂,影响掘进装备的正常生产作业和行驶平稳性。为了及时检测驱动轮轮齿损伤状态,避免故障扩大和降低维修成本,在阶次... 掘进履带行驶系统作业于煤矿巷道恶劣地形和复杂环境中,其关键承载部件驱动轮长期承受不均匀载荷,导致轮齿损伤甚至断裂,影响掘进装备的正常生产作业和行驶平稳性。为了及时检测驱动轮轮齿损伤状态,避免故障扩大和降低维修成本,在阶次跟踪算法、包络谱分析、线性峭度算法和滤波算法的基础上,提出了一种适用于变转速机械的阶域线性峭度算法。通过对只含基频、包含基频和谐频的合成仿真信号进行包络谱分析及特征分布统计,表明线性峭度相较于峭度更具优势。通过使用变转速和多噪声振动信号进行驱动轮齿损伤状态识别,并与快速谱峭度、阶域线性峭度等算法进行对比分析,表明阶域线性峭度算法具有适用性和鲁棒性。该方法可有效提高故障检测的准确性和效率,为履带行驶系统的安全健康运行提供了有力保障。 展开更多
关键词 履带行驶系统 轮齿损伤 线性峭度算法 变转速 频带定位
在线阅读 下载PDF
基于云端数据充电初期片段的电池极化参数辨识
20
作者 王丽梅 崔艳伟 +3 位作者 孙景景 赵秀亮 刘良 盘朝奉 《汽车安全与节能学报》 北大核心 2025年第2期294-302,共9页
为了提高电池极化参数在线辨识的精度及速度,提出了一种基于云端数据的基准极化参数辨识方法。通过开展电池充放脉冲实验,研究电池极化参数特性;基于云端数据充电初期片段,采用类比混合脉冲功率性能(HPPC)方法,获取充电极化参数;以充电... 为了提高电池极化参数在线辨识的精度及速度,提出了一种基于云端数据的基准极化参数辨识方法。通过开展电池充放脉冲实验,研究电池极化参数特性;基于云端数据充电初期片段,采用类比混合脉冲功率性能(HPPC)方法,获取充电极化参数;以充电极化参数为约束,利用变遗忘因子递推最小二乘法(VFFRLS),计算了放电极化参数。结果表明:本文方法的电池时间常数范围为34~53 s,在云端相应小电流倍率下极化参数不随倍率变化;充电极化内阻和极化电容的计算结果与实验结果吻合;添加约束后的在线辨识方法的收敛速度,与未添加约束相比,最少提高了6%。 展开更多
关键词 电池充电放电 极化参数 云端数据 离线辨识 类比混合脉冲功率性能(HPPC)法 变遗忘因子递推最小二乘法(VFFRLS)
在线阅读 下载PDF
上一页 1 2 86 下一页 到第
使用帮助 返回顶部