The power consumption of a variable optical attenuator(VOA) array based on a silica planar lightwave circuit was investigated. The thermal field profile of the device was optimized using the finite-element analysis....The power consumption of a variable optical attenuator(VOA) array based on a silica planar lightwave circuit was investigated. The thermal field profile of the device was optimized using the finite-element analysis. The simulation results showed that the power consumption reduces as the depth of the heat-insulating grooves is deeper, the up-cladding is thinner,the down-cladding is thicker, and the width of the cladding ridge is narrower. The materials component and thickness of the electrodes were also optimized to guarantee the driving voltage under 5 V. The power consumption was successfully reduced to as low as 155 mW at an attenuation of 30 dB in the experiment.展开更多
A four-stage cascaded variable optical attenuator(VOA)with a large attenuation range is presented.The VOA is based on a Mach–Zehnder interferometer(MZI)and fabricated in a silica-based planar lightwave circuit(PLC)pl...A four-stage cascaded variable optical attenuator(VOA)with a large attenuation range is presented.The VOA is based on a Mach–Zehnder interferometer(MZI)and fabricated in a silica-based planar lightwave circuit(PLC)platform.The thermo-optic effect is used to achieve intensity modulation.The measured maximum attenuation of the four-stage cascaded VOA is 88.38 d B.The chip is also tested in a quantum key distribution(QKD)system to generate signal and decoy states.The mean photon number after attenuation of the four-stage cascaded VOA is less than 0.1,which can meet the requirement of QKD.展开更多
Visible light variable optical attenuators(VOA) are essential devices in the application of channel power regulation and equalization in wavelength-division multiplexing cross-connect nodes in plastic optical fiber...Visible light variable optical attenuators(VOA) are essential devices in the application of channel power regulation and equalization in wavelength-division multiplexing cross-connect nodes in plastic optical fiber(POF) transmission systems.In this paper, a polymer/silica hybrid waveguide thermo–optic attenuator based on multimode interference(MMI) coupler is designed and fabricated to operate at 650 nm. The single-mode transmission condition, MMI coupler, and transition taper dimensions are optimized through the beam propagation method. Thermal analysis based on material properties provides the optimized heater placement angle. The fabricated VOA presents an attenuation of 26.5 dB with a 21-mW electrical input power at 650 nm. The rise time and fall time are 51.99 and 192 μs, respectively. The time–stability measurement results prove its working reliability.展开更多
A 16-channel dual tuning wavelength division multiplexer/demultiplexer based on silicon on insulator platform is demonstrated, which is both peak wavelength tunable and output optical power tunable. The wavelength div...A 16-channel dual tuning wavelength division multiplexer/demultiplexer based on silicon on insulator platform is demonstrated, which is both peak wavelength tunable and output optical power tunable. The wavelength division multiplexer/demultiplexer consists of an arrayed waveguide grating for wavelength division multiplexing/demultiplexing, a heater for peak wavelength tuning and a variable optical attenuator based on p–i–n carrier-injection structure for optical power tuning. The experimental results show that the insertion loss on chip of the device is 3.7 dB–5.7 dB and the crosstalk is 7.5 dB–9 dB. For the tunability of the peak wavelength, 1.058-nm wavelength tunability is achieved with 271.2-mW power consumption, and the average modulation efficiency is 3.9244 nm/W; for the tunability of the optical power, the optical power equalization is achieved in all 16 channels, 20-dB attenuation is achieved with 144.07-mW power consumption,and the raise/fall time of VOA is 35 ns/42 ns.展开更多
基金Project supported by the National High Technology Research and Development Program of China(Grant No.2015AA016902)the National Nature Science Foundation of China(Grant Nos.61435013,61405188,and 61627820)
文摘The power consumption of a variable optical attenuator(VOA) array based on a silica planar lightwave circuit was investigated. The thermal field profile of the device was optimized using the finite-element analysis. The simulation results showed that the power consumption reduces as the depth of the heat-insulating grooves is deeper, the up-cladding is thinner,the down-cladding is thicker, and the width of the cladding ridge is narrower. The materials component and thickness of the electrodes were also optimized to guarantee the driving voltage under 5 V. The power consumption was successfully reduced to as low as 155 mW at an attenuation of 30 dB in the experiment.
基金the National Key Research and Development Program of China(Grant No.2019YFB2203504)Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB43000000)the Natural Science Foundation of Anhui Province,China(Grant No.1908085QF274)。
文摘A four-stage cascaded variable optical attenuator(VOA)with a large attenuation range is presented.The VOA is based on a Mach–Zehnder interferometer(MZI)and fabricated in a silica-based planar lightwave circuit(PLC)platform.The thermo-optic effect is used to achieve intensity modulation.The measured maximum attenuation of the four-stage cascaded VOA is 88.38 d B.The chip is also tested in a quantum key distribution(QKD)system to generate signal and decoy states.The mean photon number after attenuation of the four-stage cascaded VOA is less than 0.1,which can meet the requirement of QKD.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61205032,61475061,61405070,61177027,61275033,and 61261130586)the Science and Technology Development Plan of Jilin Province,China(Grant No.20140519006JH)
文摘Visible light variable optical attenuators(VOA) are essential devices in the application of channel power regulation and equalization in wavelength-division multiplexing cross-connect nodes in plastic optical fiber(POF) transmission systems.In this paper, a polymer/silica hybrid waveguide thermo–optic attenuator based on multimode interference(MMI) coupler is designed and fabricated to operate at 650 nm. The single-mode transmission condition, MMI coupler, and transition taper dimensions are optimized through the beam propagation method. Thermal analysis based on material properties provides the optimized heater placement angle. The fabricated VOA presents an attenuation of 26.5 dB with a 21-mW electrical input power at 650 nm. The rise time and fall time are 51.99 and 192 μs, respectively. The time–stability measurement results prove its working reliability.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFB0402504)the National Nature Science Foundation of China(Grant No.61435013)
文摘A 16-channel dual tuning wavelength division multiplexer/demultiplexer based on silicon on insulator platform is demonstrated, which is both peak wavelength tunable and output optical power tunable. The wavelength division multiplexer/demultiplexer consists of an arrayed waveguide grating for wavelength division multiplexing/demultiplexing, a heater for peak wavelength tuning and a variable optical attenuator based on p–i–n carrier-injection structure for optical power tuning. The experimental results show that the insertion loss on chip of the device is 3.7 dB–5.7 dB and the crosstalk is 7.5 dB–9 dB. For the tunability of the peak wavelength, 1.058-nm wavelength tunability is achieved with 271.2-mW power consumption, and the average modulation efficiency is 3.9244 nm/W; for the tunability of the optical power, the optical power equalization is achieved in all 16 channels, 20-dB attenuation is achieved with 144.07-mW power consumption,and the raise/fall time of VOA is 35 ns/42 ns.