Numerical simulation based on a new regularized phase field model was presented to simulate the dendritic shape of a non-isothermal alloy with strong anisotropy in a forced flow. The simulation results show that a cry...Numerical simulation based on a new regularized phase field model was presented to simulate the dendritic shape of a non-isothermal alloy with strong anisotropy in a forced flow. The simulation results show that a crystal nucleus grows into a symmetric dendrite in a free flow and into an asymmetry dendrite in a forced flow. As the forced flow velocity is increased, both of the promoting effect on the upstream arm and the inhibiting effects on the downstream and perpendicular arms are intensified, and the perpendicular arm tilts to the upstream direction. With increasing the anisotropy value to 0.14, all of the dendrite arms tip velocities are gradually stabilized and finally reach their relative saturation values. In addition, the effects of an undercooling parameter and a forced compound flow on the faceted dendrite growth were also investigated.展开更多
Streamline simulation is developed to simulate waterflooding in fractured reservoirs. Conventional reservoir simulation methods for fluid flow simulation in large and complex reservoirs are very costly and time consum...Streamline simulation is developed to simulate waterflooding in fractured reservoirs. Conventional reservoir simulation methods for fluid flow simulation in large and complex reservoirs are very costly and time consuming. In streamline method, transport equations are solved on one-dimensional streamlines to reduce the computation time with less memory for simulation. First, pressure equation is solved on an Eulerian grid and streamlines are traced. Defining the "time of flight", saturation equations are mapped and solved on streamlines. Finally, the results are mapped back on Eulerian grid and the process is repeated until the simulation end time. The waterflooding process is considered in a fractured reservoir using the dual porosity model. Afterwards, a computational code is developed to solve the same problem by the IMPES method and the results of streamline simulation are compared to those of the IMPES and a commercial software. Finally, the accuracy and efficiency of streamline simulator for simulation of two-phase flow in fractured reservoirs has been proved.展开更多
This paper presents nonlinear ordinary differential equations (ODES) of the heavier pellets movement for two phase flow, which actually represent a system of equations. The usual methods of solution such as Runge -Kut...This paper presents nonlinear ordinary differential equations (ODES) of the heavier pellets movement for two phase flow, which actually represent a system of equations. The usual methods of solution such as Runge -Kutta method and it's datum results are discussed. This paper solves ODES of general form using variable mesh-length, linearizing the nonlinear terms by finite analysis method, fuilding an iteration sequence, and amending the nonlinear terms by iteration . The conditions of convergent operation of iteration solution is checked. The movement orbit and velocity of the pellets are calculated. Analysis of research results and it's application examples are illustrated.展开更多
The downstream water-air heat and moisture transfer system in a moving coordinate was studied. The relationship between the diameter of the misted droplets and the spray pressure was determined. Based on the theory of...The downstream water-air heat and moisture transfer system in a moving coordinate was studied. The relationship between the diameter of the misted droplets and the spray pressure was determined. Based on the theory of the relative velocity,the two-phase flow mode of the spray chamber and the efficiency equation for heat and moisture exchange were established. Corrections were carried out for the efficiency equation with spray pressure of 157 kPa. The results show that the pressure plays an important part in determining the efficiency of heat and moisture exchange. When the spray pressure is less than 157 kPa,better coincidence is noticed between the theoretical analysis and the test results with the error less than 6%. Greater error will be resulted in the case when the spray pressure is beyond 157 kPa. After the correction treatment,the coincidence between the theoretical and the experimental results is greatly improved.展开更多
Sediment deposition in the pumping station has a huge negative impact on unit operation.The three-dimensional CFD method has been used to simulate inlet structure flow in pumping station based on the Eulerian solid- l...Sediment deposition in the pumping station has a huge negative impact on unit operation.The three-dimensional CFD method has been used to simulate inlet structure flow in pumping station based on the Eulerian solid- liquid two-phase flow model. The numerical results of the preliminary scheme show that sediment deposition occurs in the forebay of pumping station because of poor flow pattern therein. In order to improve hydraulic configuration in the forebay,one modified measure reconstructs water diversion weir shape,and another measure sets a water retaining sill in the approach channel. The simulation results of the modified scheme prove that back flow in the forebay has been eliminated and the sediment deposition region has also been reduced.展开更多
基金Project(11102164)supported by the National Natural Science Foundation of ChinaProject(G9KY101502)supported by NPU Foundation for Fundamental Research,China
文摘Numerical simulation based on a new regularized phase field model was presented to simulate the dendritic shape of a non-isothermal alloy with strong anisotropy in a forced flow. The simulation results show that a crystal nucleus grows into a symmetric dendrite in a free flow and into an asymmetry dendrite in a forced flow. As the forced flow velocity is increased, both of the promoting effect on the upstream arm and the inhibiting effects on the downstream and perpendicular arms are intensified, and the perpendicular arm tilts to the upstream direction. With increasing the anisotropy value to 0.14, all of the dendrite arms tip velocities are gradually stabilized and finally reach their relative saturation values. In addition, the effects of an undercooling parameter and a forced compound flow on the faceted dendrite growth were also investigated.
文摘Streamline simulation is developed to simulate waterflooding in fractured reservoirs. Conventional reservoir simulation methods for fluid flow simulation in large and complex reservoirs are very costly and time consuming. In streamline method, transport equations are solved on one-dimensional streamlines to reduce the computation time with less memory for simulation. First, pressure equation is solved on an Eulerian grid and streamlines are traced. Defining the "time of flight", saturation equations are mapped and solved on streamlines. Finally, the results are mapped back on Eulerian grid and the process is repeated until the simulation end time. The waterflooding process is considered in a fractured reservoir using the dual porosity model. Afterwards, a computational code is developed to solve the same problem by the IMPES method and the results of streamline simulation are compared to those of the IMPES and a commercial software. Finally, the accuracy and efficiency of streamline simulator for simulation of two-phase flow in fractured reservoirs has been proved.
文摘This paper presents nonlinear ordinary differential equations (ODES) of the heavier pellets movement for two phase flow, which actually represent a system of equations. The usual methods of solution such as Runge -Kutta method and it's datum results are discussed. This paper solves ODES of general form using variable mesh-length, linearizing the nonlinear terms by finite analysis method, fuilding an iteration sequence, and amending the nonlinear terms by iteration . The conditions of convergent operation of iteration solution is checked. The movement orbit and velocity of the pellets are calculated. Analysis of research results and it's application examples are illustrated.
基金Project(06YFJMCI5500) supported by the Natural Science Foundation of Tianjin City of China
文摘The downstream water-air heat and moisture transfer system in a moving coordinate was studied. The relationship between the diameter of the misted droplets and the spray pressure was determined. Based on the theory of the relative velocity,the two-phase flow mode of the spray chamber and the efficiency equation for heat and moisture exchange were established. Corrections were carried out for the efficiency equation with spray pressure of 157 kPa. The results show that the pressure plays an important part in determining the efficiency of heat and moisture exchange. When the spray pressure is less than 157 kPa,better coincidence is noticed between the theoretical analysis and the test results with the error less than 6%. Greater error will be resulted in the case when the spray pressure is beyond 157 kPa. After the correction treatment,the coincidence between the theoretical and the experimental results is greatly improved.
基金Chinese National Foundation of Natural Science-Key Projects(51339005)
文摘Sediment deposition in the pumping station has a huge negative impact on unit operation.The three-dimensional CFD method has been used to simulate inlet structure flow in pumping station based on the Eulerian solid- liquid two-phase flow model. The numerical results of the preliminary scheme show that sediment deposition occurs in the forebay of pumping station because of poor flow pattern therein. In order to improve hydraulic configuration in the forebay,one modified measure reconstructs water diversion weir shape,and another measure sets a water retaining sill in the approach channel. The simulation results of the modified scheme prove that back flow in the forebay has been eliminated and the sediment deposition region has also been reduced.