In the era of network live broadcasting for everyone,the development of live broadcasting platforms is also more intelligent and diversified.However,in the face of a large group of elderly users,the interface interact...In the era of network live broadcasting for everyone,the development of live broadcasting platforms is also more intelligent and diversified.However,in the face of a large group of elderly users,the interface interaction design mode used is still mainly based on the interaction mode for young groups,and is not designed for elderly users.Therefore,a design method for optimizing the interaction interface of live broadcasting platform for elderly users was proposed in this study.Firstly,the case study method and Delphi expert survey method were used to determine the design needs of elderly users and the design mode was analysed.Secondly,the orthogonal design principle was used to design a test sample of the interactive interface of live broadcasting platform applicable for the elderly users,and then a user evaluation system was established to calculate the weights of the design elements using hierarchical analysis,and then the predictive relationship between the design mode of the interactive interface of live broadcasting platform and the elderly users was established by Quantitative Theory I.Finally,Genetic Algorithm was applied to generate the optimized design scheme.The results showed that the design method based on the Genetic Algorithm and the combination of Quantitative Theory can scientifically and effectively optimize the design of the interactive interface of the live broadcasting platform for the elderly users,and improve the experience of the elderly users.展开更多
Using the existing positioning technology can easily obtain high-precision positioning information,which can save resources and reduce complexity when used in the communication field.In this paper,we propose a locatio...Using the existing positioning technology can easily obtain high-precision positioning information,which can save resources and reduce complexity when used in the communication field.In this paper,we propose a location-based user scheduling and beamforming scheme for the downlink of a massive multi-user input-output system.Specifically,we combine an analog outer beamformer with a digital inner beamformer.An outer beamformer can be selected from a codebook formed by antenna steering vectors,and then a reduced-complexity inner beamformer based on iterative orthogonal matrices and right triangular matrices(QR)decomposition is applied to cancel interuser interference.Then,we propose a low-complexity user selection algorithm using location information in this paper.We first derive the geometric angle between channel matrices,which represent the correlation between users.Furthermore,we derive the asymptotic signal to interference-plus-noise ratio(SINR)of the system in the context of two-stage beamforming using random matrix theory(RMT),taking into account inter-channel correlations and energies.Simulation results show that the algorithm can achieve higher system and speed while reducing computational complexity.展开更多
With the arrival of the big data era,the phenomenon of information overload is becoming increasingly severe.In response to the common issue of sparse user rating matrices in recommendation systems,a collaborative filt...With the arrival of the big data era,the phenomenon of information overload is becoming increasingly severe.In response to the common issue of sparse user rating matrices in recommendation systems,a collaborative filtering recommendation algorithm was proposed based on improved user profiles in this study.Firstly,a profile labeling system was constructed based on user characteristics.This study proposed that user profile labels should be created using basic user information and basic item information,in order to construct multidimensional user profiles.TF-IDF algorithm was used to determine the weights of user-item feature labels.Secondly,user similarity was calculated by weighting both profile-based collaborative filtering and user-based collaborative filtering algorithms,and the final user similarity was obtained by harmonizing these weights.Finally,personalized recommendations were generated using Top-N method.Validation with the MovieLens-1M dataset revealed that this algorithm enhances both recommendation Precision and Recall compared to single-method approaches(recommendation algorithm based on user portrait and user-based collaborative filtering algorithm).展开更多
Submicron scale temperature sensors are crucial for a range of applications,particularly in micro and na-noscale environments.One promising solution involves the use of active whispering gallery mode(WGM)microresonato...Submicron scale temperature sensors are crucial for a range of applications,particularly in micro and na-noscale environments.One promising solution involves the use of active whispering gallery mode(WGM)microresonators.These resonators can be remotely excited and read out using free-space structures,simplifying the process of sensing.In this study,we present a submicron-scale temperature sensor with a remarkable sensitivity up to 185 pm/℃based on a trian-gular MAPbI3 nanoplatelet(NPL)laser.Notably,as temperature changes,the peak wavelength of the laser line shifts lin-early.This unique characteristic allows for precise temperature sensing by tracking the peak wavelength of the NPL laser.The optical modes are confined within the perovskite NPL,which measures just 85 nm in height,due to total internal reflec-tion.Our NPL laser boasts several key features,including a high Q of~2610 and a low laser threshold of about 19.8μJ·cm^(−2).The combination of exceptional sensitivity and ultra-small size makes our WGM device an ideal candidate for integration into systems that demand compact temperature sensors.This advancement paves the way for significant prog-ress in the development of ultrasmall temperature sensors,opening new possibilities across various fields.展开更多
In the data-driven era of the internet and business environments,constructing accurate user profiles is paramount for personalized user understanding and classification.The traditional TF-IDF algorithm has some limita...In the data-driven era of the internet and business environments,constructing accurate user profiles is paramount for personalized user understanding and classification.The traditional TF-IDF algorithm has some limitations when evaluating the impact of words on classification results.Consequently,an improved TF-IDF-K algorithm was introduced in this study,which included an equalization factor,aimed at constructing user profiles by processing and analyzing user search records.Through the training and prediction capabilities of a Support Vector Machine(SVM),it enabled the prediction of user demographic attributes.The experimental results demonstrated that the TF-IDF-K algorithm has achieved a significant improvement in classification accuracy and reliability.展开更多
In the context of big data, many large-scale knowledge graphs have emerged to effectively organize the explosive growth of web data on the Internet. To select suitable knowledge graphs for use from many knowledge grap...In the context of big data, many large-scale knowledge graphs have emerged to effectively organize the explosive growth of web data on the Internet. To select suitable knowledge graphs for use from many knowledge graphs, quality assessment is particularly important. As an important thing of quality assessment, completeness assessment generally refers to the ratio of the current data volume to the total data volume.When evaluating the completeness of a knowledge graph, it is often necessary to refine the completeness dimension by setting different completeness metrics to produce more complete and understandable evaluation results for the knowledge graph.However, lack of awareness of requirements is the most problematic quality issue. In the actual evaluation process, the existing completeness metrics need to consider the actual application. Therefore, to accurately recommend suitable knowledge graphs to many users, it is particularly important to develop relevant measurement metrics and formulate measurement schemes for completeness. In this paper, we will first clarify the concept of completeness, establish each metric of completeness, and finally design a measurement proposal for the completeness of knowledge graphs.展开更多
The detection of hypersonic targets usually confronts range migration(RM)issue before coherent integration(CI).The traditional methods aiming at correcting RM to obtain CI mainly considers the narrow-band radar condit...The detection of hypersonic targets usually confronts range migration(RM)issue before coherent integration(CI).The traditional methods aiming at correcting RM to obtain CI mainly considers the narrow-band radar condition.However,with the increasing requirement of far-range detection,the time bandwidth product,which is corresponding to radar’s mean power,should be promoted in actual application.Thus,the echo signal generates the scale effect(SE)at large time bandwidth product situation,influencing the intra and inter pulse integration performance.To eliminate SE and correct RM,this paper proposes an effective algorithm,i.e.,scaled location rotation transform(ScLRT).The ScLRT can remove SE to obtain the matching pulse compression(PC)as well as correct RM to complete CI via the location rotation transform,being implemented by seeking the actual rotation angle.Compared to the traditional coherent detection algorithms,Sc LRT can address the SE problem to achieve better detection/estimation capabilities.At last,this paper gives several simulations to assess the viability of ScLRT.展开更多
For the ultimate strength model test evaluation of large ship structures, the distortion model with non-uniform ratio between the main size and the plate thickness size is usually adopted. It is the key to carry out s...For the ultimate strength model test evaluation of large ship structures, the distortion model with non-uniform ratio between the main size and the plate thickness size is usually adopted. It is the key to carry out scale model test to establish a distortion model similar to the real ship structure under combined load. A similarity criterion for ship distortion model under the combined action of bending moment and surface pressure was proposed, and the scale effect for the criterion was verified by a se ries of numerical analysis and model tests. The results show that the similarity criterion for ship distor tion model under combined loads has a certain scale effect. For the model tests of ship cabin struc tures, it is suggested that the scale range between the plate thickness scale and the main dimension scale should be controlled within 2:1, which can be used as a reference for distortion model design and ultimate strength test of large-scale ship structures.展开更多
Many digital platforms have employed free-content promotion strategies to deal with the high uncertainty levels regarding digital content products.However,the diversity of digital content products and user heterogenei...Many digital platforms have employed free-content promotion strategies to deal with the high uncertainty levels regarding digital content products.However,the diversity of digital content products and user heterogeneity in content preference may blur the impact of platform promotions across users and products.Therefore,free-content promotion strategies should be adapted to allocate marketing resources optimally and increase revenue.This study develops personal-ized free-content promotion strategies based on individual-level heterogeneous treatment effects and explores the causes of their heterogeneity,focusing on the moderating effect of user engagement-related variables.To this end,we utilize ran-dom field experimental data provided by a top Chinese e-book platform.We employ a framework that combines machine learning with econometric causal inference methods to estimate individual treatment effects and analyze their potential mechanisms.The analysis shows that,on average,free-content promotions lead to a significant increase in consumer pay-ments.However,the higher the level of user engagement,the lower the payment lift caused by promotions,as more-engaged users are more strongly affected by the cannibalization effect of free-content promotion.This study introduces a novel causal research design to help platforms improve their marketing strategies.展开更多
文摘In the era of network live broadcasting for everyone,the development of live broadcasting platforms is also more intelligent and diversified.However,in the face of a large group of elderly users,the interface interaction design mode used is still mainly based on the interaction mode for young groups,and is not designed for elderly users.Therefore,a design method for optimizing the interaction interface of live broadcasting platform for elderly users was proposed in this study.Firstly,the case study method and Delphi expert survey method were used to determine the design needs of elderly users and the design mode was analysed.Secondly,the orthogonal design principle was used to design a test sample of the interactive interface of live broadcasting platform applicable for the elderly users,and then a user evaluation system was established to calculate the weights of the design elements using hierarchical analysis,and then the predictive relationship between the design mode of the interactive interface of live broadcasting platform and the elderly users was established by Quantitative Theory I.Finally,Genetic Algorithm was applied to generate the optimized design scheme.The results showed that the design method based on the Genetic Algorithm and the combination of Quantitative Theory can scientifically and effectively optimize the design of the interactive interface of the live broadcasting platform for the elderly users,and improve the experience of the elderly users.
基金supported by the National Natural Science Foundation of China(61901341).
文摘Using the existing positioning technology can easily obtain high-precision positioning information,which can save resources and reduce complexity when used in the communication field.In this paper,we propose a location-based user scheduling and beamforming scheme for the downlink of a massive multi-user input-output system.Specifically,we combine an analog outer beamformer with a digital inner beamformer.An outer beamformer can be selected from a codebook formed by antenna steering vectors,and then a reduced-complexity inner beamformer based on iterative orthogonal matrices and right triangular matrices(QR)decomposition is applied to cancel interuser interference.Then,we propose a low-complexity user selection algorithm using location information in this paper.We first derive the geometric angle between channel matrices,which represent the correlation between users.Furthermore,we derive the asymptotic signal to interference-plus-noise ratio(SINR)of the system in the context of two-stage beamforming using random matrix theory(RMT),taking into account inter-channel correlations and energies.Simulation results show that the algorithm can achieve higher system and speed while reducing computational complexity.
文摘With the arrival of the big data era,the phenomenon of information overload is becoming increasingly severe.In response to the common issue of sparse user rating matrices in recommendation systems,a collaborative filtering recommendation algorithm was proposed based on improved user profiles in this study.Firstly,a profile labeling system was constructed based on user characteristics.This study proposed that user profile labels should be created using basic user information and basic item information,in order to construct multidimensional user profiles.TF-IDF algorithm was used to determine the weights of user-item feature labels.Secondly,user similarity was calculated by weighting both profile-based collaborative filtering and user-based collaborative filtering algorithms,and the final user similarity was obtained by harmonizing these weights.Finally,personalized recommendations were generated using Top-N method.Validation with the MovieLens-1M dataset revealed that this algorithm enhances both recommendation Precision and Recall compared to single-method approaches(recommendation algorithm based on user portrait and user-based collaborative filtering algorithm).
文摘Submicron scale temperature sensors are crucial for a range of applications,particularly in micro and na-noscale environments.One promising solution involves the use of active whispering gallery mode(WGM)microresonators.These resonators can be remotely excited and read out using free-space structures,simplifying the process of sensing.In this study,we present a submicron-scale temperature sensor with a remarkable sensitivity up to 185 pm/℃based on a trian-gular MAPbI3 nanoplatelet(NPL)laser.Notably,as temperature changes,the peak wavelength of the laser line shifts lin-early.This unique characteristic allows for precise temperature sensing by tracking the peak wavelength of the NPL laser.The optical modes are confined within the perovskite NPL,which measures just 85 nm in height,due to total internal reflec-tion.Our NPL laser boasts several key features,including a high Q of~2610 and a low laser threshold of about 19.8μJ·cm^(−2).The combination of exceptional sensitivity and ultra-small size makes our WGM device an ideal candidate for integration into systems that demand compact temperature sensors.This advancement paves the way for significant prog-ress in the development of ultrasmall temperature sensors,opening new possibilities across various fields.
文摘In the data-driven era of the internet and business environments,constructing accurate user profiles is paramount for personalized user understanding and classification.The traditional TF-IDF algorithm has some limitations when evaluating the impact of words on classification results.Consequently,an improved TF-IDF-K algorithm was introduced in this study,which included an equalization factor,aimed at constructing user profiles by processing and analyzing user search records.Through the training and prediction capabilities of a Support Vector Machine(SVM),it enabled the prediction of user demographic attributes.The experimental results demonstrated that the TF-IDF-K algorithm has achieved a significant improvement in classification accuracy and reliability.
基金supported by the National Key Laboratory for Comp lex Systems Simulation Foundation (6142006190301)。
文摘In the context of big data, many large-scale knowledge graphs have emerged to effectively organize the explosive growth of web data on the Internet. To select suitable knowledge graphs for use from many knowledge graphs, quality assessment is particularly important. As an important thing of quality assessment, completeness assessment generally refers to the ratio of the current data volume to the total data volume.When evaluating the completeness of a knowledge graph, it is often necessary to refine the completeness dimension by setting different completeness metrics to produce more complete and understandable evaluation results for the knowledge graph.However, lack of awareness of requirements is the most problematic quality issue. In the actual evaluation process, the existing completeness metrics need to consider the actual application. Therefore, to accurately recommend suitable knowledge graphs to many users, it is particularly important to develop relevant measurement metrics and formulate measurement schemes for completeness. In this paper, we will first clarify the concept of completeness, establish each metric of completeness, and finally design a measurement proposal for the completeness of knowledge graphs.
基金supported by the National Natural Science Foundation of China(62101099)the Chinese Postdoctoral Science Foundation(2021M690558,2022T150100,2018M633352,2019T120825)+3 种基金the Young Elite Scientist Sponsorship Program(YESS20200082)the Aeronautical Science Foundation of China(2022Z017080001)the Open Foundation of Science and Technology on Electronic Information Control Laboratorythe Natural Science Foundation of Sichuan Province(2023NSFSC1386)。
文摘The detection of hypersonic targets usually confronts range migration(RM)issue before coherent integration(CI).The traditional methods aiming at correcting RM to obtain CI mainly considers the narrow-band radar condition.However,with the increasing requirement of far-range detection,the time bandwidth product,which is corresponding to radar’s mean power,should be promoted in actual application.Thus,the echo signal generates the scale effect(SE)at large time bandwidth product situation,influencing the intra and inter pulse integration performance.To eliminate SE and correct RM,this paper proposes an effective algorithm,i.e.,scaled location rotation transform(ScLRT).The ScLRT can remove SE to obtain the matching pulse compression(PC)as well as correct RM to complete CI via the location rotation transform,being implemented by seeking the actual rotation angle.Compared to the traditional coherent detection algorithms,Sc LRT can address the SE problem to achieve better detection/estimation capabilities.At last,this paper gives several simulations to assess the viability of ScLRT.
文摘For the ultimate strength model test evaluation of large ship structures, the distortion model with non-uniform ratio between the main size and the plate thickness size is usually adopted. It is the key to carry out scale model test to establish a distortion model similar to the real ship structure under combined load. A similarity criterion for ship distortion model under the combined action of bending moment and surface pressure was proposed, and the scale effect for the criterion was verified by a se ries of numerical analysis and model tests. The results show that the similarity criterion for ship distor tion model under combined loads has a certain scale effect. For the model tests of ship cabin struc tures, it is suggested that the scale range between the plate thickness scale and the main dimension scale should be controlled within 2:1, which can be used as a reference for distortion model design and ultimate strength test of large-scale ship structures.
基金supported by the Anhui Postdoctoral Scientific Research Program Foundation(2022B579).
文摘Many digital platforms have employed free-content promotion strategies to deal with the high uncertainty levels regarding digital content products.However,the diversity of digital content products and user heterogeneity in content preference may blur the impact of platform promotions across users and products.Therefore,free-content promotion strategies should be adapted to allocate marketing resources optimally and increase revenue.This study develops personal-ized free-content promotion strategies based on individual-level heterogeneous treatment effects and explores the causes of their heterogeneity,focusing on the moderating effect of user engagement-related variables.To this end,we utilize ran-dom field experimental data provided by a top Chinese e-book platform.We employ a framework that combines machine learning with econometric causal inference methods to estimate individual treatment effects and analyze their potential mechanisms.The analysis shows that,on average,free-content promotions lead to a significant increase in consumer pay-ments.However,the higher the level of user engagement,the lower the payment lift caused by promotions,as more-engaged users are more strongly affected by the cannibalization effect of free-content promotion.This study introduces a novel causal research design to help platforms improve their marketing strategies.