Background Zonal application maps are designed to represent field variability using key variables that can be translated into tailored management practices.For cotton,zonal maps for crop growth regulator(CGR)applicati...Background Zonal application maps are designed to represent field variability using key variables that can be translated into tailored management practices.For cotton,zonal maps for crop growth regulator(CGR)applications under variable-rate(VR)strategies are commonly based exclusively on vegetation indices(VIs)variability.However,VIs often saturate in dense crop vegetation areas,limiting their effectiveness in distinguishing variability in crop growth.This study aimed to compare unsupervised framework(UF)and supervised framework(SUF)approaches for generat-ing zonal application maps for CGR under VR conditions.During 2022-2023 agricultural seasons,an UF was employed to generate zonal maps based on locally collected field data on plant height of cotton,satellite imagery,soil texture,and phenology data.Subsequently,a SUF(based on historical data between 2020-2021 to 2022-2023 agricultural seasons)was developed to predict plant height using remote sensing and phenology data,aiming to replicate same zonal maps but without relying on direct field measurements of plant height.Both approaches were tested in three fields and on two different dates per field.Results The predictive model for plant height of SUF performed well,as indicated by the model metrics.However,when comparing zonal application maps for specific field-date combinations,the predicted plant height exhibited lower variability compared with field measurements.This led to variable compatibility between SUF maps,which utilized the model predictions,and the UF maps,which were based on the real field data.Fields characterized by much pronounced soil texture variability yielded the highest compatibility between the zonal application maps produced by both SUF and UF approaches.This was predominantly due to the greater consistency in estimating plant development patterns within these heterogeneous field environments.While VR application approach can facilitate product savings during the application operation,other key factors must be considered.These include the availability of specialized machinery required for this type of applications,as well as the inherent operational costs associated with applying a single CGR product which differs from the typical uniform rate applications that often integrate multi-ple inputs.Conclusion Predictive modeling shows promise for assisting in the creation of zonal application maps for VR of CGR applications.However,the degree of agreement with the actual variability in crop growth found in the field should be evaluated on a field-by-field basis.The SUF approach,which is based on plant heigh prediction,demonstrated potential for supporting the development of zonal application maps for VR of CGR applications.However,the degree to which this approach aligns itself with the actual variability in crop growth observed in the field may vary,necessi-tating field-by-field evaluation.展开更多
Color quantization is bound to lose spatial information of color distribution. If too much necessary spatial distribution information of color is lost in JSEG, it is difficult or even impossible for JSEG to segment im...Color quantization is bound to lose spatial information of color distribution. If too much necessary spatial distribution information of color is lost in JSEG, it is difficult or even impossible for JSEG to segment image correctly. Enlightened from segmentation based on fuzzy theories, soft class-map is constracted to solve that problem. The definitions of values and other related ones are adjusted according to the soft class-map. With more detailed values obtained from soft class map, more color distribution information is preserved. Experiments on a synthetic image and many other color images illustrate that JSEG with soft class-map can solve efficiently the problem that in a region there may exist color gradual variation in a smooth transition. It is a more robust method especially for images which haven' t been heavily blurred near boundaries of underlying regions.展开更多
An implementation of adaptive filtering,composed of an unsupervised adaptive filter(UAF),a multi-step forward linear predictor(FLP),and an unsupervised multi-step adaptive predictor(UMAP),is built for suppressing impu...An implementation of adaptive filtering,composed of an unsupervised adaptive filter(UAF),a multi-step forward linear predictor(FLP),and an unsupervised multi-step adaptive predictor(UMAP),is built for suppressing impulsive noise in unknown circumstances.This filtering scheme,called unsupervised robust adaptive filter(URAF),possesses a switching structure,which ensures the robustness against impulsive noise.The FLP is used to detect the possible impulsive noise added to the signal,if the signal is"impulse-free",the filter UAF can estimate the clean sig-nal.If there exists impulsive noise,the impulse corrupted samples are replaced by predicted ones from the FLP,and then the UMAP estimates the clean signal.Both the simulation and experimental results show that the URAF has a better rate of convergence than the most recent universal filter,and is effective to restrict large disturbance like impulsive noise when the universal filter fails.展开更多
Considering the sparsity of hyperspectral images(HSIs),dictionary learning frameworks have been widely used in the field of unsupervised spectral unmixing.However,it is worth mentioning here that existing dictionary l...Considering the sparsity of hyperspectral images(HSIs),dictionary learning frameworks have been widely used in the field of unsupervised spectral unmixing.However,it is worth mentioning here that existing dictionary learning method-based unmixing methods are found to be short of robustness in noisy contexts.To improve the performance,this study specifically puts forward a new unsupervised spectral unmixing solution.For the reason that the solution only functions in a condition that both endmembers and the abundances meet non-negative con-straints,a model is built to solve the unsupervised spectral un-mixing problem on the account of the dictionary learning me-thod.To raise the screening accuracy of final members,a new form of the target function is introduced into dictionary learning practice,which is conducive to the growing robustness of noisy HSI statistics.Then,by introducing the total variation(TV)terms into the proposed spectral unmixing based on robust nonnega-tive dictionary learning(RNDLSU),the context information under HSI space is to be cited as prior knowledge to compute the abundances when performing sparse unmixing operations.Ac-cording to the final results of the experiment,this method makes favorable performance under varying noise conditions,which is especially true under low signal to noise conditions.展开更多
Unsupervised learning plays an important role in the neural networks. Focusing on the unsupervised mechanism of neural networks, a novel generalized goodness criterion for the unsupervised neural learning of visual pe...Unsupervised learning plays an important role in the neural networks. Focusing on the unsupervised mechanism of neural networks, a novel generalized goodness criterion for the unsupervised neural learning of visual perception based on the martingale measure is proposed in the paper. The differential geometrical structure is used as the framework of the whole inference and spatial statistical description with adaptive attribute is embedded in the corresponding nonlinear functional space. Consequently the integration of optimization process and computational simulation with the NeoDarwinian paradigm is obtained. And the generalization of the guidance for the evolutionary learning in the neural net framework, the convergence of the goodness and process of the evolution guaranteed by the mathematical features are discussed. This criterion has generic significance in the field of machine vision and visual pattern classification.展开更多
As a new neural network model,extreme learning machine(ELM)has a good learning rate and generalization ability.However,ELM with a single hidden layer structure often fails to achieve good results when faced with large...As a new neural network model,extreme learning machine(ELM)has a good learning rate and generalization ability.However,ELM with a single hidden layer structure often fails to achieve good results when faced with large-scale multi-featured problems.To resolve this problem,we propose a multi-layer framework for the ELM learning algorithm to improve the model’s generalization ability.Moreover,noises or abnormal points often exist in practical applications,and they result in the inability to obtain clean training data.The generalization ability of the original ELM decreases under such circumstances.To address this issue,we add model bias and variance to the loss function so that the model gains the ability to minimize model bias and model variance,thus reducing the influence of noise signals.A new robust multi-layer algorithm called ML-RELM is proposed to enhance outlier robustness in complex datasets.Simulation results show that the method has high generalization ability and strong robustness to noise.展开更多
To advance the printing manufacturing industry towards intelligence and address the challenges faced by supervised learning,such as the high workload,cost,poor generalization,and labeling issues,an unsupervised and tr...To advance the printing manufacturing industry towards intelligence and address the challenges faced by supervised learning,such as the high workload,cost,poor generalization,and labeling issues,an unsupervised and transfer learning-based method for printing defect detection was proposed in this study.This method enabled defect detection in printed surface without the need for extensive labeled defect.The ResNet101-SSTU model was used in this study.On the public dataset of printing defect images,the ResNet101-SSTU model not only achieves comparable performance and speed to mainstream supervised learning detection models but also successfully addresses some of the detection challenges encountered in supervised learning.The proposed ResNet101-SSTU model effectively eliminates the need for extensive defect samples and labeled data in training,providing an efficient solution for quality inspection in the printing industry.展开更多
The task of modeling and analyzing intercepted multifunction radars(MFRs)pulse trains is vital for cognitive electronic reconnaissance.Existing methodologies predominantly rely on prior information or heavily constrai...The task of modeling and analyzing intercepted multifunction radars(MFRs)pulse trains is vital for cognitive electronic reconnaissance.Existing methodologies predominantly rely on prior information or heavily constrained models,posing challenges for non-cooperative applications.This paper introduces a novel approach to model MFRs using a Bayesian network,where the conditional probability density function is approximated by an autoregressive kernel mixture network(ARKMN).Utilizing the estimated probability density function,a dynamic programming algorithm is proposed for denoising and detecting change points in the intercepted MFRs pulse trains.Simulation results affirm the proposed method's efficacy in modeling MFRs,outperforming the state-of-the-art in pulse train denoising and change point detection.展开更多
文摘Background Zonal application maps are designed to represent field variability using key variables that can be translated into tailored management practices.For cotton,zonal maps for crop growth regulator(CGR)applications under variable-rate(VR)strategies are commonly based exclusively on vegetation indices(VIs)variability.However,VIs often saturate in dense crop vegetation areas,limiting their effectiveness in distinguishing variability in crop growth.This study aimed to compare unsupervised framework(UF)and supervised framework(SUF)approaches for generat-ing zonal application maps for CGR under VR conditions.During 2022-2023 agricultural seasons,an UF was employed to generate zonal maps based on locally collected field data on plant height of cotton,satellite imagery,soil texture,and phenology data.Subsequently,a SUF(based on historical data between 2020-2021 to 2022-2023 agricultural seasons)was developed to predict plant height using remote sensing and phenology data,aiming to replicate same zonal maps but without relying on direct field measurements of plant height.Both approaches were tested in three fields and on two different dates per field.Results The predictive model for plant height of SUF performed well,as indicated by the model metrics.However,when comparing zonal application maps for specific field-date combinations,the predicted plant height exhibited lower variability compared with field measurements.This led to variable compatibility between SUF maps,which utilized the model predictions,and the UF maps,which were based on the real field data.Fields characterized by much pronounced soil texture variability yielded the highest compatibility between the zonal application maps produced by both SUF and UF approaches.This was predominantly due to the greater consistency in estimating plant development patterns within these heterogeneous field environments.While VR application approach can facilitate product savings during the application operation,other key factors must be considered.These include the availability of specialized machinery required for this type of applications,as well as the inherent operational costs associated with applying a single CGR product which differs from the typical uniform rate applications that often integrate multi-ple inputs.Conclusion Predictive modeling shows promise for assisting in the creation of zonal application maps for VR of CGR applications.However,the degree of agreement with the actual variability in crop growth found in the field should be evaluated on a field-by-field basis.The SUF approach,which is based on plant heigh prediction,demonstrated potential for supporting the development of zonal application maps for VR of CGR applications.However,the degree to which this approach aligns itself with the actual variability in crop growth observed in the field may vary,necessi-tating field-by-field evaluation.
文摘Color quantization is bound to lose spatial information of color distribution. If too much necessary spatial distribution information of color is lost in JSEG, it is difficult or even impossible for JSEG to segment image correctly. Enlightened from segmentation based on fuzzy theories, soft class-map is constracted to solve that problem. The definitions of values and other related ones are adjusted according to the soft class-map. With more detailed values obtained from soft class map, more color distribution information is preserved. Experiments on a synthetic image and many other color images illustrate that JSEG with soft class-map can solve efficiently the problem that in a region there may exist color gradual variation in a smooth transition. It is a more robust method especially for images which haven' t been heavily blurred near boundaries of underlying regions.
基金supported by the National Science Fund for Distinguished Young Scholars of China(60925011)
文摘An implementation of adaptive filtering,composed of an unsupervised adaptive filter(UAF),a multi-step forward linear predictor(FLP),and an unsupervised multi-step adaptive predictor(UMAP),is built for suppressing impulsive noise in unknown circumstances.This filtering scheme,called unsupervised robust adaptive filter(URAF),possesses a switching structure,which ensures the robustness against impulsive noise.The FLP is used to detect the possible impulsive noise added to the signal,if the signal is"impulse-free",the filter UAF can estimate the clean sig-nal.If there exists impulsive noise,the impulse corrupted samples are replaced by predicted ones from the FLP,and then the UMAP estimates the clean signal.Both the simulation and experimental results show that the URAF has a better rate of convergence than the most recent universal filter,and is effective to restrict large disturbance like impulsive noise when the universal filter fails.
基金supported by the National Natural Science Foundation of China(61801513).
文摘Considering the sparsity of hyperspectral images(HSIs),dictionary learning frameworks have been widely used in the field of unsupervised spectral unmixing.However,it is worth mentioning here that existing dictionary learning method-based unmixing methods are found to be short of robustness in noisy contexts.To improve the performance,this study specifically puts forward a new unsupervised spectral unmixing solution.For the reason that the solution only functions in a condition that both endmembers and the abundances meet non-negative con-straints,a model is built to solve the unsupervised spectral un-mixing problem on the account of the dictionary learning me-thod.To raise the screening accuracy of final members,a new form of the target function is introduced into dictionary learning practice,which is conducive to the growing robustness of noisy HSI statistics.Then,by introducing the total variation(TV)terms into the proposed spectral unmixing based on robust nonnega-tive dictionary learning(RNDLSU),the context information under HSI space is to be cited as prior knowledge to compute the abundances when performing sparse unmixing operations.Ac-cording to the final results of the experiment,this method makes favorable performance under varying noise conditions,which is especially true under low signal to noise conditions.
文摘Unsupervised learning plays an important role in the neural networks. Focusing on the unsupervised mechanism of neural networks, a novel generalized goodness criterion for the unsupervised neural learning of visual perception based on the martingale measure is proposed in the paper. The differential geometrical structure is used as the framework of the whole inference and spatial statistical description with adaptive attribute is embedded in the corresponding nonlinear functional space. Consequently the integration of optimization process and computational simulation with the NeoDarwinian paradigm is obtained. And the generalization of the guidance for the evolutionary learning in the neural net framework, the convergence of the goodness and process of the evolution guaranteed by the mathematical features are discussed. This criterion has generic significance in the field of machine vision and visual pattern classification.
基金Project(21878081)supported by the National Natural Science Foundation of ChinaProject(222201917006)supported by the Fundamental Research Funds for the Central Universities,China。
文摘As a new neural network model,extreme learning machine(ELM)has a good learning rate and generalization ability.However,ELM with a single hidden layer structure often fails to achieve good results when faced with large-scale multi-featured problems.To resolve this problem,we propose a multi-layer framework for the ELM learning algorithm to improve the model’s generalization ability.Moreover,noises or abnormal points often exist in practical applications,and they result in the inability to obtain clean training data.The generalization ability of the original ELM decreases under such circumstances.To address this issue,we add model bias and variance to the loss function so that the model gains the ability to minimize model bias and model variance,thus reducing the influence of noise signals.A new robust multi-layer algorithm called ML-RELM is proposed to enhance outlier robustness in complex datasets.Simulation results show that the method has high generalization ability and strong robustness to noise.
文摘To advance the printing manufacturing industry towards intelligence and address the challenges faced by supervised learning,such as the high workload,cost,poor generalization,and labeling issues,an unsupervised and transfer learning-based method for printing defect detection was proposed in this study.This method enabled defect detection in printed surface without the need for extensive labeled defect.The ResNet101-SSTU model was used in this study.On the public dataset of printing defect images,the ResNet101-SSTU model not only achieves comparable performance and speed to mainstream supervised learning detection models but also successfully addresses some of the detection challenges encountered in supervised learning.The proposed ResNet101-SSTU model effectively eliminates the need for extensive defect samples and labeled data in training,providing an efficient solution for quality inspection in the printing industry.
基金supported by the National Natural Science Foundation of China under Grant 62301119。
文摘The task of modeling and analyzing intercepted multifunction radars(MFRs)pulse trains is vital for cognitive electronic reconnaissance.Existing methodologies predominantly rely on prior information or heavily constrained models,posing challenges for non-cooperative applications.This paper introduces a novel approach to model MFRs using a Bayesian network,where the conditional probability density function is approximated by an autoregressive kernel mixture network(ARKMN).Utilizing the estimated probability density function,a dynamic programming algorithm is proposed for denoising and detecting change points in the intercepted MFRs pulse trains.Simulation results affirm the proposed method's efficacy in modeling MFRs,outperforming the state-of-the-art in pulse train denoising and change point detection.