位于谐振区的雷达目标可由极点特征进行识别,但极点特征的物理意义及其对应的谐振机理并不明确。针对该问题,本文利用一致性几何绕射理论(uniform geometrical theory of diffraction,UTD),研究了曲面绕射的谐振机理,并提出了一种用于...位于谐振区的雷达目标可由极点特征进行识别,但极点特征的物理意义及其对应的谐振机理并不明确。针对该问题,本文利用一致性几何绕射理论(uniform geometrical theory of diffraction,UTD),研究了曲面绕射的谐振机理,并提出了一种用于谐振区含曲面目标识别的极点正向推算方法。首先,用投影递推寻迹算法在目标表面获取爬行波的闭合路径及几何参数;然后,基于UTD给出曲面绕射场表达式,推导出用于预测极点的谐振方程;最后,通过对理想导体球及椭球进行极点预测,与频域仿真提取的极点进行对比,综合误差在5%以内,验证了建模方法的准确性。展开更多
Understanding the physical features of the diffracted sound field on the surface of an axisymmetric body is important for predicting the self-noise of a sonar mounted on an underwater platform. The diffracted sound fi...Understanding the physical features of the diffracted sound field on the surface of an axisymmetric body is important for predicting the self-noise of a sonar mounted on an underwater platform. The diffracted sound field from the transition region of an axisymmetric body was calculated by the geometrical theory of diffraction. The diffraction ray between the source point and the receiving point on the surface of an axisymmetric body was calculated by using the dynamic programming method. Based on the diffracted sound field, a simulation scheme for the noise correlation of the conformal array was presented. It was shown that the normalized pressure of the diffracted sound field from the transition region reduced with the increases of the frequency and the curvature of the ray. The flow noises of two models were compared and a rather optimum fore-body geometric shape was given. Furthermore, it was shown that the correlation of the flow noise in the low frequencies was stronger than that in the high frequencies. And the flow noise received by the acoustic array on the curved surface had a stronger correlation than that on the head plane at the designed center frequency, which is important for sonar system design.展开更多
文摘位于谐振区的雷达目标可由极点特征进行识别,但极点特征的物理意义及其对应的谐振机理并不明确。针对该问题,本文利用一致性几何绕射理论(uniform geometrical theory of diffraction,UTD),研究了曲面绕射的谐振机理,并提出了一种用于谐振区含曲面目标识别的极点正向推算方法。首先,用投影递推寻迹算法在目标表面获取爬行波的闭合路径及几何参数;然后,基于UTD给出曲面绕射场表达式,推导出用于预测极点的谐振方程;最后,通过对理想导体球及椭球进行极点预测,与频域仿真提取的极点进行对比,综合误差在5%以内,验证了建模方法的准确性。
基金Project supported by the National Natural Science Foundational of China (Grant No.10774119)the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No.NCET-08-0455)+2 种基金the Natural Science Foundation of Shaanxi Province of China (Grant No.SJ08F07)the Foundation of National Laboratory of Acoustics of Chinathe Foundation for Fundamental Research of Northwestern Polytechnical University of China (Grant No.2007004)
文摘Understanding the physical features of the diffracted sound field on the surface of an axisymmetric body is important for predicting the self-noise of a sonar mounted on an underwater platform. The diffracted sound field from the transition region of an axisymmetric body was calculated by the geometrical theory of diffraction. The diffraction ray between the source point and the receiving point on the surface of an axisymmetric body was calculated by using the dynamic programming method. Based on the diffracted sound field, a simulation scheme for the noise correlation of the conformal array was presented. It was shown that the normalized pressure of the diffracted sound field from the transition region reduced with the increases of the frequency and the curvature of the ray. The flow noises of two models were compared and a rather optimum fore-body geometric shape was given. Furthermore, it was shown that the correlation of the flow noise in the low frequencies was stronger than that in the high frequencies. And the flow noise received by the acoustic array on the curved surface had a stronger correlation than that on the head plane at the designed center frequency, which is important for sonar system design.