Spatial covariance matrix(SCM) is essential in many multi-antenna systems such as massive multiple-input multiple-output(MIMO). For multi-antenna systems operating at millimeter-wave bands, hybrid analog-digital struc...Spatial covariance matrix(SCM) is essential in many multi-antenna systems such as massive multiple-input multiple-output(MIMO). For multi-antenna systems operating at millimeter-wave bands, hybrid analog-digital structure has been widely adopted to reduce the cost of radio frequency chains.In this situation, signals received at the antennas are unavailable to the digital receiver, and as a consequence, traditional sample average approach cannot be used for SCM reconstruction in hybrid multi-antenna systems. To address this issue, beam sweeping algorithm(BSA) which can reconstruct the SCM effectively for a hybrid uniform linear array, has been proposed in our previous works. However, direct extension of BSA to a hybrid uniform circular array(UCA)will result in a huge computational burden. To this end, a low-complexity approach is proposed in this paper. By exploiting the symmetry features of SCM for the UCA, the number of unknowns can be reduced significantly and thus the complexity of reconstruction can be saved accordingly. Furthermore, an insightful analysis is also presented in this paper, showing that the reduction of the number of unknowns can also improve the accuracy of the reconstructed SCM. Simulation results are also shown to demonstrate the proposed approach.展开更多
The received signal of the polarization sensitive array is proved to have trilinear model characteristics. The blind parallel factor(PARAFAC) signal detection algorithm for the polarization sensitive array is propos...The received signal of the polarization sensitive array is proved to have trilinear model characteristics. The blind parallel factor(PARAFAC) signal detection algorithm for the polarization sensitive array is proposed. The trilinear alternating least square (TALS) algorithm is used to abtain the source matrix, and then the matrix is judged. Simulation results show that the bit error rate (BER) of the detection algorithm is close to that of the non-blind decorrelating method and the algorithm works well under the array error condition. BER difference between the non-blind method and this algorithm is less than 2 dB under a high SNR. The algorithm is blind and robust. The channel fading, the direction of arrive(DOA) imformation and the polarization information are needless in the algorithm.展开更多
A radio wave driven by Orbital angular momentum(OAM) is called a vortex radio and has a helical wavefront. The differential helical wavefronts of several vortex radios are closely related to their topological charges ...A radio wave driven by Orbital angular momentum(OAM) is called a vortex radio and has a helical wavefront. The differential helical wavefronts of several vortex radios are closely related to their topological charges or mode numbers. In physics, two or more radio waves with different mode numbers are orthogonal to their azimuth angles. With the development of radio communication technologies, some researchers have been exploring the OAM-based multi-mode multiplexing(multi-OAM-mode multiplexing) technologies in order to enhance the channel spectrum efficiency(SE) of a radio communication system by using the orthogonal properties of vortex radios. After reviewing the reported researches of OAM-based radio communication, we find that some breakthroughs have been made in the combination of OAM and traditional Multi-Input-Multi-Output(MIMO). However, the existing technology is not sufficient to support OAM-based MIMO system to achieve maximum the channel SE. To maximize the spectrum efficiency of OAM-based MIMO system, we present a reused multi-OAM-mode multiplexing vortex radio(RMMVR) MIMO system, which is based on fractal uniform cir-cular arrays(UCAs). The scheme described in this study can effectively combine multiOAM-mode multiplexing with MIMO spatial multiplexing. First, we present the generation of RMMVR MIMO signals. Second, under line-of-sight(LOS) propagation conditions, we derive the channels of the RMMVR MIMO system. Third, we separate the RMMVR MIMO signals using an orthogonal separation method based on full azimuth sampling. Finally, we introduce the method for calculating the channel capacity of the RMMVR MIMO system. Theoretical analysis shows that the scheme proposed in this study is feasible. Moreover, the simulation results show that spatial and mode diversity are obtained by exploiting fractal UCAs. However, to enhance the channel SE of RMMVR MIMO system, an interference cancellation method needs to be introduced for zero-mode vortex radios, and some methods of multi-OAM-mode beams convergence and mode power optimization strategy should be introduced in the future.展开更多
The influence of a rigid spherical baffle on the response of a uniform circular microphone array (UCA) is analyzed and two eigen-beam beamforming arrays are designed in the eigen-beam subspaee derived from the sound...The influence of a rigid spherical baffle on the response of a uniform circular microphone array (UCA) is analyzed and two eigen-beam beamforming arrays are designed in the eigen-beam subspaee derived from the soundfield decomposition. Expressions of white noise gain (WNG) and directivity index (DI) are derived for the designed arrays. Performance analyses are carried out for the designed arrays and compared between those of the delay-and-sum beamforming array using UCA with and without a rigid sphere. Computer simulations demonstrate that the designed arrays have frequency-independent directivity with the cost of reduced robustness at low frequency band. The delay-and-sum beamforming array has constant WNG at all frequencies, while its directivity of which is reduced at low frequency band. The rigid sphere can improve the robustness for all the arrays.展开更多
The Cramer-Rao bound(CRB)for two-dimensional(2-D)direction of arrival(DOA)estimation in multiple-input multiple-output(MIMO)radar with uniform circular array(UCA)is studied.Compared with the uniform linear array(ULA),...The Cramer-Rao bound(CRB)for two-dimensional(2-D)direction of arrival(DOA)estimation in multiple-input multiple-output(MIMO)radar with uniform circular array(UCA)is studied.Compared with the uniform linear array(ULA),UCA can obtain the similar performance with fewer antennas and can achieve DOA estimation in the range of 360°.This paper investigates the signal model of the MIMO radar with UCA and 2-D DOA estimation with the multiple signal classification(MUSIC)method.The CRB expressions are derived for DOA estimation and the relationship between the CRB and several parameters of the MIMO radar system is discussed.The simulation results show that more antennas and larger radius of the UCA leads to lower CRB and more accurate DOA estimation performance for the monostatic MIMO radar.Also the interference during the 2-D DOA estimation will be well restrained when the number of the transmitting antennas is different from that of the receiving antennas.展开更多
本文提出了一种用天线阵来进行多个入射平面波的DOA(direction of arrival)估计方法.这种方法可以解决以往像MUSIC、ESPRIT等算法信号数不能超过阵元数的问题.这种方法计算量少、精度高、可适用于任意几何形状天线阵.同时得到信号频率估...本文提出了一种用天线阵来进行多个入射平面波的DOA(direction of arrival)估计方法.这种方法可以解决以往像MUSIC、ESPRIT等算法信号数不能超过阵元数的问题.这种方法计算量少、精度高、可适用于任意几何形状天线阵.同时得到信号频率估计,在平面阵中可得到自动成对的2维角估计.并且借助于相应技术,可对相关信号源的DOA进行估计.本文以均匀圆环天线阵(UCA)来估计多于阵元数的多个入射平面波空间2维角(俯仰角,方位角)为例进行仿真,最后给出计算机模拟结果证实该方法的实用性、有效性.展开更多
为提高声场空域中目标参数估计的精度,将四元数理论应用于均匀圆型声矢量阵列的二维空间角度估计中,建立了基于四元数模型的信号接收模型,推导了圆型声矢量阵的四元数导向矢量,给出了二维波达角估计的四元数域空间谱算法。考虑算法的软...为提高声场空域中目标参数估计的精度,将四元数理论应用于均匀圆型声矢量阵列的二维空间角度估计中,建立了基于四元数模型的信号接收模型,推导了圆型声矢量阵的四元数导向矢量,给出了二维波达角估计的四元数域空间谱算法。考虑算法的软硬件可实现性,理论分析了算法的内存占用空间和计算量。此外,分析了圆阵半径对侧向性能的影响,为实际工作中圆阵的半径选取提供了一定的依据。仿真结果表明,基于四元数模型的MUSIC(Multiple Signal Classification)算法的分辨力较高,抗干扰能力较强,提高了信号参数估计的精度。展开更多
针对Music-like方法能很好地扩展阵列孔径,但计算量较大的问题,提出了一种虚拟阵列扩展的新方法。该方法基于四阶累积量孔径扩展的性质,由实际阵元的坐标与方向矢量直接计算出虚拟阵元的坐标与方向矢量,利用两种阵元坐标之间的关系构造...针对Music-like方法能很好地扩展阵列孔径,但计算量较大的问题,提出了一种虚拟阵列扩展的新方法。该方法基于四阶累积量孔径扩展的性质,由实际阵元的坐标与方向矢量直接计算出虚拟阵元的坐标与方向矢量,利用两种阵元坐标之间的关系构造四阶协方差矩阵,运用MUSIC(Mu ltip le S ignal C lassification)算法对非高斯独立信号源进行DOA(D irection of Arrival)估计。该方法在任意阵列的情况下,对非高斯独立信号源进行一维与二维DOA估计,均能准确估计出多于实际阵元数目的方向角与仰角。实验表明,对一N元阵列,该方法最多能够扩展N2-N+1个虚拟阵元,能够估计出N2-N个非高斯独立信源,提高了阵列的空间分辨能力,有效抑制了高斯噪声的干扰,减少了高阶累积量协方差矩阵的计算量。展开更多
基金supported by National Key Research and Development Program of China under Grant 2020YFB1804901State Key Laboratory of Rail Traffic Control and Safety(Contract:No.RCS2022ZT 015)Special Key Project of Technological Innovation and Application Development of Chongqing Science and Technology Bureau(cstc2019jscx-fxydX0053).
文摘Spatial covariance matrix(SCM) is essential in many multi-antenna systems such as massive multiple-input multiple-output(MIMO). For multi-antenna systems operating at millimeter-wave bands, hybrid analog-digital structure has been widely adopted to reduce the cost of radio frequency chains.In this situation, signals received at the antennas are unavailable to the digital receiver, and as a consequence, traditional sample average approach cannot be used for SCM reconstruction in hybrid multi-antenna systems. To address this issue, beam sweeping algorithm(BSA) which can reconstruct the SCM effectively for a hybrid uniform linear array, has been proposed in our previous works. However, direct extension of BSA to a hybrid uniform circular array(UCA)will result in a huge computational burden. To this end, a low-complexity approach is proposed in this paper. By exploiting the symmetry features of SCM for the UCA, the number of unknowns can be reduced significantly and thus the complexity of reconstruction can be saved accordingly. Furthermore, an insightful analysis is also presented in this paper, showing that the reduction of the number of unknowns can also improve the accuracy of the reconstructed SCM. Simulation results are also shown to demonstrate the proposed approach.
文摘The received signal of the polarization sensitive array is proved to have trilinear model characteristics. The blind parallel factor(PARAFAC) signal detection algorithm for the polarization sensitive array is proposed. The trilinear alternating least square (TALS) algorithm is used to abtain the source matrix, and then the matrix is judged. Simulation results show that the bit error rate (BER) of the detection algorithm is close to that of the non-blind decorrelating method and the algorithm works well under the array error condition. BER difference between the non-blind method and this algorithm is less than 2 dB under a high SNR. The algorithm is blind and robust. The channel fading, the direction of arrive(DOA) imformation and the polarization information are needless in the algorithm.
基金supported by the National Natural Science Foundation of China(No.61671347)
文摘A radio wave driven by Orbital angular momentum(OAM) is called a vortex radio and has a helical wavefront. The differential helical wavefronts of several vortex radios are closely related to their topological charges or mode numbers. In physics, two or more radio waves with different mode numbers are orthogonal to their azimuth angles. With the development of radio communication technologies, some researchers have been exploring the OAM-based multi-mode multiplexing(multi-OAM-mode multiplexing) technologies in order to enhance the channel spectrum efficiency(SE) of a radio communication system by using the orthogonal properties of vortex radios. After reviewing the reported researches of OAM-based radio communication, we find that some breakthroughs have been made in the combination of OAM and traditional Multi-Input-Multi-Output(MIMO). However, the existing technology is not sufficient to support OAM-based MIMO system to achieve maximum the channel SE. To maximize the spectrum efficiency of OAM-based MIMO system, we present a reused multi-OAM-mode multiplexing vortex radio(RMMVR) MIMO system, which is based on fractal uniform cir-cular arrays(UCAs). The scheme described in this study can effectively combine multiOAM-mode multiplexing with MIMO spatial multiplexing. First, we present the generation of RMMVR MIMO signals. Second, under line-of-sight(LOS) propagation conditions, we derive the channels of the RMMVR MIMO system. Third, we separate the RMMVR MIMO signals using an orthogonal separation method based on full azimuth sampling. Finally, we introduce the method for calculating the channel capacity of the RMMVR MIMO system. Theoretical analysis shows that the scheme proposed in this study is feasible. Moreover, the simulation results show that spatial and mode diversity are obtained by exploiting fractal UCAs. However, to enhance the channel SE of RMMVR MIMO system, an interference cancellation method needs to be introduced for zero-mode vortex radios, and some methods of multi-OAM-mode beams convergence and mode power optimization strategy should be introduced in the future.
文摘The influence of a rigid spherical baffle on the response of a uniform circular microphone array (UCA) is analyzed and two eigen-beam beamforming arrays are designed in the eigen-beam subspaee derived from the soundfield decomposition. Expressions of white noise gain (WNG) and directivity index (DI) are derived for the designed arrays. Performance analyses are carried out for the designed arrays and compared between those of the delay-and-sum beamforming array using UCA with and without a rigid sphere. Computer simulations demonstrate that the designed arrays have frequency-independent directivity with the cost of reduced robustness at low frequency band. The delay-and-sum beamforming array has constant WNG at all frequencies, while its directivity of which is reduced at low frequency band. The rigid sphere can improve the robustness for all the arrays.
基金supported by the National Natural Science Foundation of China(Nos.61071163,61071164,61471191)project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘The Cramer-Rao bound(CRB)for two-dimensional(2-D)direction of arrival(DOA)estimation in multiple-input multiple-output(MIMO)radar with uniform circular array(UCA)is studied.Compared with the uniform linear array(ULA),UCA can obtain the similar performance with fewer antennas and can achieve DOA estimation in the range of 360°.This paper investigates the signal model of the MIMO radar with UCA and 2-D DOA estimation with the multiple signal classification(MUSIC)method.The CRB expressions are derived for DOA estimation and the relationship between the CRB and several parameters of the MIMO radar system is discussed.The simulation results show that more antennas and larger radius of the UCA leads to lower CRB and more accurate DOA estimation performance for the monostatic MIMO radar.Also the interference during the 2-D DOA estimation will be well restrained when the number of the transmitting antennas is different from that of the receiving antennas.
文摘本文提出了一种用天线阵来进行多个入射平面波的DOA(direction of arrival)估计方法.这种方法可以解决以往像MUSIC、ESPRIT等算法信号数不能超过阵元数的问题.这种方法计算量少、精度高、可适用于任意几何形状天线阵.同时得到信号频率估计,在平面阵中可得到自动成对的2维角估计.并且借助于相应技术,可对相关信号源的DOA进行估计.本文以均匀圆环天线阵(UCA)来估计多于阵元数的多个入射平面波空间2维角(俯仰角,方位角)为例进行仿真,最后给出计算机模拟结果证实该方法的实用性、有效性.
文摘为提高声场空域中目标参数估计的精度,将四元数理论应用于均匀圆型声矢量阵列的二维空间角度估计中,建立了基于四元数模型的信号接收模型,推导了圆型声矢量阵的四元数导向矢量,给出了二维波达角估计的四元数域空间谱算法。考虑算法的软硬件可实现性,理论分析了算法的内存占用空间和计算量。此外,分析了圆阵半径对侧向性能的影响,为实际工作中圆阵的半径选取提供了一定的依据。仿真结果表明,基于四元数模型的MUSIC(Multiple Signal Classification)算法的分辨力较高,抗干扰能力较强,提高了信号参数估计的精度。
文摘针对Music-like方法能很好地扩展阵列孔径,但计算量较大的问题,提出了一种虚拟阵列扩展的新方法。该方法基于四阶累积量孔径扩展的性质,由实际阵元的坐标与方向矢量直接计算出虚拟阵元的坐标与方向矢量,利用两种阵元坐标之间的关系构造四阶协方差矩阵,运用MUSIC(Mu ltip le S ignal C lassification)算法对非高斯独立信号源进行DOA(D irection of Arrival)估计。该方法在任意阵列的情况下,对非高斯独立信号源进行一维与二维DOA估计,均能准确估计出多于实际阵元数目的方向角与仰角。实验表明,对一N元阵列,该方法最多能够扩展N2-N+1个虚拟阵元,能够估计出N2-N个非高斯独立信源,提高了阵列的空间分辨能力,有效抑制了高斯噪声的干扰,减少了高阶累积量协方差矩阵的计算量。