为解决风电机组故障诊断中故障样本不足而导致模型准确率不高的问题,将当下备受关注的数据增强方法-去噪扩散概率模型(denoising diffusion probability model,DDPM)引入到故障诊断领域以生成大量高质量的故障样本数据集。因此,结合Tran...为解决风电机组故障诊断中故障样本不足而导致模型准确率不高的问题,将当下备受关注的数据增强方法-去噪扩散概率模型(denoising diffusion probability model,DDPM)引入到故障诊断领域以生成大量高质量的故障样本数据集。因此,结合Transformer网络,提出了一种DDPM-Transformer风电机组故障样本生成方法。首先,将用于计算机视觉图像生成领域的DDPM模型应用于风电机组故障诊断领域中,通过前向加噪过程将数据逐渐转化为噪声,再通过逆向去噪过程将噪声逐步恢复为原始数据,实现从噪声中生成故障数据,解决数据不平衡问题;其次,通过对原始DDPM中使用的U-net模块进行改进,使用Transformer模型替换U-net网络,利用扩散后的数据和添加的噪声训练Transformer模型,实现噪声预测,以提高故障数据的生成质量;最后,使用多种生成模型评价指标对生成的故障数据进行评价,在监督控制和数据采集系统(supervisory control and data acquisition,SCADA)故障数据生成中论证改进DDPM-Transformer模型的性能。通过试验证明,所提DDPM-Transformer模型与现有的生成模型相比,最大均值异(maximum mean discrepancy,MMD)最大提升0.13,峰值信噪比(peak signal to noise ratio,PSNR)最大提升7.8。所提模型可以有效地生成质量更高的风电机组故障样本,从而基于该样本集辅助训练基于深度学习的故障诊断模型,可以使诊断模型具有更高精度和良好的稳定性。展开更多
提出了基于VPMCD(Variable Predictive Model Based Class Discriminate,简称VPMCD)和EMD(Empirical mode decomposition,简称EMD)的齿轮故障诊断方法,并将它应用于齿轮稳态信号的分析。VPMCD方法是一种新的模式识别方法,特别适合于非...提出了基于VPMCD(Variable Predictive Model Based Class Discriminate,简称VPMCD)和EMD(Empirical mode decomposition,简称EMD)的齿轮故障诊断方法,并将它应用于齿轮稳态信号的分析。VPMCD方法是一种新的模式识别方法,特别适合于非线性分类问题,它充分利用从原始数据中所提取的特征值之间的相互内在关系建立数学模型,从而进行模式识别。在基于VPMCD和EMD的齿轮故障诊断方法中,首先采用EMD方法将齿轮振动信号自适应地分解为若干个单分量信号,然后提取各个分量的样本熵并将其作为特征值,最后采用VPMCD分类器进行故障识别和分类。结果表明该方法能够有效地突出齿轮故障振动信号的故障特征,提高了齿轮故障诊断的准确性。展开更多
文摘为解决风电机组故障诊断中故障样本不足而导致模型准确率不高的问题,将当下备受关注的数据增强方法-去噪扩散概率模型(denoising diffusion probability model,DDPM)引入到故障诊断领域以生成大量高质量的故障样本数据集。因此,结合Transformer网络,提出了一种DDPM-Transformer风电机组故障样本生成方法。首先,将用于计算机视觉图像生成领域的DDPM模型应用于风电机组故障诊断领域中,通过前向加噪过程将数据逐渐转化为噪声,再通过逆向去噪过程将噪声逐步恢复为原始数据,实现从噪声中生成故障数据,解决数据不平衡问题;其次,通过对原始DDPM中使用的U-net模块进行改进,使用Transformer模型替换U-net网络,利用扩散后的数据和添加的噪声训练Transformer模型,实现噪声预测,以提高故障数据的生成质量;最后,使用多种生成模型评价指标对生成的故障数据进行评价,在监督控制和数据采集系统(supervisory control and data acquisition,SCADA)故障数据生成中论证改进DDPM-Transformer模型的性能。通过试验证明,所提DDPM-Transformer模型与现有的生成模型相比,最大均值异(maximum mean discrepancy,MMD)最大提升0.13,峰值信噪比(peak signal to noise ratio,PSNR)最大提升7.8。所提模型可以有效地生成质量更高的风电机组故障样本,从而基于该样本集辅助训练基于深度学习的故障诊断模型,可以使诊断模型具有更高精度和良好的稳定性。
文摘提出了基于VPMCD(Variable Predictive Model Based Class Discriminate,简称VPMCD)和EMD(Empirical mode decomposition,简称EMD)的齿轮故障诊断方法,并将它应用于齿轮稳态信号的分析。VPMCD方法是一种新的模式识别方法,特别适合于非线性分类问题,它充分利用从原始数据中所提取的特征值之间的相互内在关系建立数学模型,从而进行模式识别。在基于VPMCD和EMD的齿轮故障诊断方法中,首先采用EMD方法将齿轮振动信号自适应地分解为若干个单分量信号,然后提取各个分量的样本熵并将其作为特征值,最后采用VPMCD分类器进行故障识别和分类。结果表明该方法能够有效地突出齿轮故障振动信号的故障特征,提高了齿轮故障诊断的准确性。