Focused underwater plasma sound sources are being applied in more and more fields. Focusing performance is one of the most important factors determining transmission distance and peak values of the pulsed sound waves....Focused underwater plasma sound sources are being applied in more and more fields. Focusing performance is one of the most important factors determining transmission distance and peak values of the pulsed sound waves. The sound source’s components and focusing mechanism were all analyzed. A model was built in 3D Max and wave strength was measured on the simulation platform. Error analysis was fully integrated into the model so that effects on sound focusing performance of processing-errors and installation-errors could be studied. Based on what was practical, ways to limit the errors were proposed. The results of the error analysis should guide the design, machining, placement, debugging and application of underwater plasma sound sources.展开更多
This paper presents a semi-analytical solution for the vibration and sound radiation of a semi-infinite plate covered by a decoupling layer consisting of locally resonant acoustic metamaterial. Formulations are derive...This paper presents a semi-analytical solution for the vibration and sound radiation of a semi-infinite plate covered by a decoupling layer consisting of locally resonant acoustic metamaterial. Formulations are derived based on a combination use of effective medium theory and the theory of elasticity for the decoupling material. Theoretical results show good agree- ments between the method developed in this paper and the conventional finite element method (FEM), but the method of this paper is more efficient than FEM. Numerical results also show that system with acoustic metamaterial decoupling layer exhibits significant noise reduction performance at the local resonance frequency of the acoustic metamaterial, and such performance can be ascribed to the vibration suppression of the base plate. It is demonstrated that the effective density of acoustic metamaterial decoupling layer has a great influence on the mechanical impedance of the system. Furthermore, the resonance frequency of locally resonant structure can be effectively predicted by a simple model, and it can be significantly affected by the material properties of the locally resonant structure.展开更多
Underwater acoustic models are effective tools for simulating underwater sound propagation.More than 50 years of research have been conducted on the theory and computational models of sound propagation in the ocean.Un...Underwater acoustic models are effective tools for simulating underwater sound propagation.More than 50 years of research have been conducted on the theory and computational models of sound propagation in the ocean.Unfortunately,underwater sound propagation models were unable to solve practical large-scale three-dimensional problems for many years due to limited computing power and hardware conditions.Since the mid-1980s,research on high performance computing for acoustic propagation models in the field of underwater acoustics has flourished with the emergence of high-performance computing platforms,enabling underwater acoustic propagation models to solve many practical application problems that could not be solved before.In this paper,the contributions of research on high-performance computing for underwater acoustic propagation models since the 1980s are thoroughly reviewed and the possible development directions for the future are outlined.展开更多
Highly directional launch and intensity adjustment of underwater acoustic signals are crucial in many areas such as abyssal navigation,underwater signal communication,and detection for marine biology.Inspired by the p...Highly directional launch and intensity adjustment of underwater acoustic signals are crucial in many areas such as abyssal navigation,underwater signal communication,and detection for marine biology.Inspired by the phenomenon that aquatic animals like dolphins detect and track prey with high resolution,we propose an energy-distributable directional sensing strategy which can achieve parallel needle-like transmitting sound beams with adjustable energy based on out-coupling valley-polarized edge states.The acoustic spin angular momentum and energy flow distribution at different interfaces inside the phononic crystal are provided and they show tight coupling.Furthermore,a sound beam with a width of 20°and an acoustic intensity enhancement factor≈6.6 are observed in the far field.As an application,we show that this device can be used as an acoustic energy distributor.This communication pattern with excellent functionalities and performance provides a desirable idea for high-energy-level directional collimated underwater sensing and underwater acoustic energy distribution.展开更多
Parabolic equation (PE) method is an efficient tool for modelling underwater sound propagation, particularly for problems involving range dependence. Since the PE method was first introduced into the field of underw...Parabolic equation (PE) method is an efficient tool for modelling underwater sound propagation, particularly for problems involving range dependence. Since the PE method was first introduced into the field of underwater acoustics, it has been about 40 years, during which contributions to extending its capability has been continuously made. The most recent review paper surveyed the contributions made before 1999. In the period of 2000-2016, the development of PE method basically focuses on seismo-acoustic problems, three-dimensional problems, and realistic applications. In this paper, a review covering the contribution from 2000 to 2016 is given, and what should be done in future work is also discussed.展开更多
基金Supported by the National Natural Science Foundation under Grant No.60572098
文摘Focused underwater plasma sound sources are being applied in more and more fields. Focusing performance is one of the most important factors determining transmission distance and peak values of the pulsed sound waves. The sound source’s components and focusing mechanism were all analyzed. A model was built in 3D Max and wave strength was measured on the simulation platform. Error analysis was fully integrated into the model so that effects on sound focusing performance of processing-errors and installation-errors could be studied. Based on what was practical, ways to limit the errors were proposed. The results of the error analysis should guide the design, machining, placement, debugging and application of underwater plasma sound sources.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51305448 and 51275519)
文摘This paper presents a semi-analytical solution for the vibration and sound radiation of a semi-infinite plate covered by a decoupling layer consisting of locally resonant acoustic metamaterial. Formulations are derived based on a combination use of effective medium theory and the theory of elasticity for the decoupling material. Theoretical results show good agree- ments between the method developed in this paper and the conventional finite element method (FEM), but the method of this paper is more efficient than FEM. Numerical results also show that system with acoustic metamaterial decoupling layer exhibits significant noise reduction performance at the local resonance frequency of the acoustic metamaterial, and such performance can be ascribed to the vibration suppression of the base plate. It is demonstrated that the effective density of acoustic metamaterial decoupling layer has a great influence on the mechanical impedance of the system. Furthermore, the resonance frequency of locally resonant structure can be effectively predicted by a simple model, and it can be significantly affected by the material properties of the locally resonant structure.
基金Project supported by the Fund for Key Laboratory of National Defense Science and Technology of Underwater Acoustic Countermeasure Technology(Grant No.6412214200403)the National Defense Fundamental Scientific Research Program(Grant No.JCKY2020550C011)the Special Independent Scientific Research Program of National University of Defense Technology(Grant No.ZZKY-ZX-04-01)。
文摘Underwater acoustic models are effective tools for simulating underwater sound propagation.More than 50 years of research have been conducted on the theory and computational models of sound propagation in the ocean.Unfortunately,underwater sound propagation models were unable to solve practical large-scale three-dimensional problems for many years due to limited computing power and hardware conditions.Since the mid-1980s,research on high performance computing for acoustic propagation models in the field of underwater acoustics has flourished with the emergence of high-performance computing platforms,enabling underwater acoustic propagation models to solve many practical application problems that could not be solved before.In this paper,the contributions of research on high-performance computing for underwater acoustic propagation models since the 1980s are thoroughly reviewed and the possible development directions for the future are outlined.
基金supported by the National Natural Science Foundation of China (Grant Nos.12232014 and 12072221)the Fundamental Research Funds for the Central Universities (Grant No.2013017)。
文摘Highly directional launch and intensity adjustment of underwater acoustic signals are crucial in many areas such as abyssal navigation,underwater signal communication,and detection for marine biology.Inspired by the phenomenon that aquatic animals like dolphins detect and track prey with high resolution,we propose an energy-distributable directional sensing strategy which can achieve parallel needle-like transmitting sound beams with adjustable energy based on out-coupling valley-polarized edge states.The acoustic spin angular momentum and energy flow distribution at different interfaces inside the phononic crystal are provided and they show tight coupling.Furthermore,a sound beam with a width of 20°and an acoustic intensity enhancement factor≈6.6 are observed in the far field.As an application,we show that this device can be used as an acoustic energy distributor.This communication pattern with excellent functionalities and performance provides a desirable idea for high-energy-level directional collimated underwater sensing and underwater acoustic energy distribution.
基金Project supported by the Foundation of State Key Laboratory of Acoustics,Institute of Acoustics,Chinese Academy of Sciences(Grant No.SKLA201303)the National Natural Science Foundation of China(Grant Nos.11104044,11234002,and 11474073)
文摘Parabolic equation (PE) method is an efficient tool for modelling underwater sound propagation, particularly for problems involving range dependence. Since the PE method was first introduced into the field of underwater acoustics, it has been about 40 years, during which contributions to extending its capability has been continuously made. The most recent review paper surveyed the contributions made before 1999. In the period of 2000-2016, the development of PE method basically focuses on seismo-acoustic problems, three-dimensional problems, and realistic applications. In this paper, a review covering the contribution from 2000 to 2016 is given, and what should be done in future work is also discussed.