This paper deals with the blind separation of nonstation-ary sources and direction-of-arrival (DOA) estimation in the under-determined case, when there are more sources than sensors. We assume the sources to be time...This paper deals with the blind separation of nonstation-ary sources and direction-of-arrival (DOA) estimation in the under-determined case, when there are more sources than sensors. We assume the sources to be time-frequency (TF) disjoint to a certain extent. In particular, the number of sources presented at any TF neighborhood is strictly less than that of sensors. We can identify the real number of active sources and achieve separation in any TF neighborhood by the sparse representation method. Compared with the subspace-based algorithm under the same sparseness assumption, which suffers from the extra noise effect since it can-not estimate the true number of active sources, the proposed algorithm can estimate the number of active sources and their cor-responding TF values in any TF neighborhood simultaneously. An-other contribution of this paper is a new estimation procedure for the DOA of sources in the underdetermined case, which combines the TF sparseness of sources and the clustering technique. Sim-ulation results demonstrate the validity and high performance of the proposed algorithm in both blind source separation (BSS) and DOA estimation.展开更多
In order to achieve accurate recovery signals under the underdetermined circumstance in a comparatively short time,an algorithm based on plane pursuit(PP) is proposed. The proposed algorithm selects the atoms accordin...In order to achieve accurate recovery signals under the underdetermined circumstance in a comparatively short time,an algorithm based on plane pursuit(PP) is proposed. The proposed algorithm selects the atoms according to the correlation between received signals and hyper planes, which are composed by column vectors of the mixing matrix, and uses these atoms to recover source signals. Simulation results demonstrate that the PP algorithm has low complexity and higher accuracy as compared with basic pursuit(BP), orthogonal matching pursuit(OMP), and adaptive sparsity matching pursuit(ASMP) algorithms.展开更多
Blind separation of sparse sources (BSSS) is discussed. The BSSS method based on the conventional K-means clustering is very fast and is also easy to implement. However, the accuracy of this method is generally not ...Blind separation of sparse sources (BSSS) is discussed. The BSSS method based on the conventional K-means clustering is very fast and is also easy to implement. However, the accuracy of this method is generally not satisfactory. The contribution of the vector x(t) with different modules is theoretically proved to be unequal, and a weighted K-means clustering method is proposed on this grounds. The proposed algorithm is not only as fast as the conventional K-means clustering method, but can also achieve considerably accurate results, which is demonstrated by numerical experiments.展开更多
By using the sparsity of frequency hopping(FH) signals,an underdetermined blind source separation(UBSS) algorithm is presented. Firstly, the short time Fourier transform(STFT) is performed on the mixed signals. ...By using the sparsity of frequency hopping(FH) signals,an underdetermined blind source separation(UBSS) algorithm is presented. Firstly, the short time Fourier transform(STFT) is performed on the mixed signals. Then, the mixing matrix, hopping frequencies, hopping instants and the hooping rate can be estimated by the K-means clustering algorithm. With the estimated mixing matrix, the directions of arrival(DOA) of source signals can be obtained. Then, the FH signals are sorted and the FH pattern is obtained. Finally, the shortest path algorithm is adopted to recover the time domain signals. Simulation results show that the correlation coefficient between the estimated FH signal and the source signal is above 0.9 when the signal-to-noise ratio(SNR) is higher than 0 d B and hopping parameters of multiple FH signals in the synchronous orthogonal FH network can be accurately estimated and sorted under the underdetermined conditions.展开更多
针对多地球同步轨道(Geostationary Earth Orbit,GEO)卫星多输入多输出(Multiple-Input Multiple-Output,MIMO)通信系统下行链路遭遇无人机集群恶意干扰场景中,干扰无人机数量时变且未知以及地球站观测信号信干比(Signal to Interferenc...针对多地球同步轨道(Geostationary Earth Orbit,GEO)卫星多输入多输出(Multiple-Input Multiple-Output,MIMO)通信系统下行链路遭遇无人机集群恶意干扰场景中,干扰无人机数量时变且未知以及地球站观测信号信干比(Signal to Interference Ratio,SIR)和信噪比(Signal-to-Noise Ratio,SNR)低的问题,提出了特征金字塔网络(Feature Pyramid Network,FPN)和双向长短时记忆(Bidirectional Long Short Term Memory,BiLSTM)网络相结合的FPNBiLSTM网络架构及其训练方法,实现源数目时变的端到端欠定混合盲源分离.该算法无须进行干扰源数目估计,也无须经历传统的信号解调,即可从欠定混合的观测中直接提取期望信号的比特序列.仿真结果表明,与其他基于深度学习网络的欠定混合盲源分离算法相比,提出的算法在源信号数目时变且SNR和SIR均很低的场景中,如SNR=0 dB和SIR=-18 dB,算法的误码率可低至10-4,具有良好的干扰消除性能.展开更多
针对混合矩阵估计算法中传统的噪声环境下基于密度的空间聚类(density-based spatial clustering of applications with noise,DBSCAN)算法需要人为设定邻域半径以及核心点数这一问题,提出双约束粒子群优化(double constrained particle...针对混合矩阵估计算法中传统的噪声环境下基于密度的空间聚类(density-based spatial clustering of applications with noise,DBSCAN)算法需要人为设定邻域半径以及核心点数这一问题,提出双约束粒子群优化(double constrained particle swarm optimization,DCPSO)算法,对DBSCAN算法的邻域半径参数进行寻优,将得到的最优参数作为DBSCAN算法的参数输入,然后计算聚类中心,完成混合矩阵估计。针对基于距离排序的源信号数目估计算法存在依靠经验参数的选取且不具备噪声点剔除能力的问题,提出了最大距离排序算法。实验结果表明,所提算法较相应的对比算法皆有提升,源信号数目估计准确率较原算法提高近40%,混合矩阵估计的误差较对比算法提升3 dB以上,且所提算法在收敛速度上优于原算法。展开更多
基金supported by the National Natural Science Foundation of China(61072120)
文摘This paper deals with the blind separation of nonstation-ary sources and direction-of-arrival (DOA) estimation in the under-determined case, when there are more sources than sensors. We assume the sources to be time-frequency (TF) disjoint to a certain extent. In particular, the number of sources presented at any TF neighborhood is strictly less than that of sensors. We can identify the real number of active sources and achieve separation in any TF neighborhood by the sparse representation method. Compared with the subspace-based algorithm under the same sparseness assumption, which suffers from the extra noise effect since it can-not estimate the true number of active sources, the proposed algorithm can estimate the number of active sources and their cor-responding TF values in any TF neighborhood simultaneously. An-other contribution of this paper is a new estimation procedure for the DOA of sources in the underdetermined case, which combines the TF sparseness of sources and the clustering technique. Sim-ulation results demonstrate the validity and high performance of the proposed algorithm in both blind source separation (BSS) and DOA estimation.
基金supported by the National Natural Science Foundation of China(61201134)the 111 Project(B08038)
文摘In order to achieve accurate recovery signals under the underdetermined circumstance in a comparatively short time,an algorithm based on plane pursuit(PP) is proposed. The proposed algorithm selects the atoms according to the correlation between received signals and hyper planes, which are composed by column vectors of the mixing matrix, and uses these atoms to recover source signals. Simulation results demonstrate that the PP algorithm has low complexity and higher accuracy as compared with basic pursuit(BP), orthogonal matching pursuit(OMP), and adaptive sparsity matching pursuit(ASMP) algorithms.
基金the National Natural Science Foundation of China (60672061)
文摘Blind separation of sparse sources (BSSS) is discussed. The BSSS method based on the conventional K-means clustering is very fast and is also easy to implement. However, the accuracy of this method is generally not satisfactory. The contribution of the vector x(t) with different modules is theoretically proved to be unequal, and a weighted K-means clustering method is proposed on this grounds. The proposed algorithm is not only as fast as the conventional K-means clustering method, but can also achieve considerably accurate results, which is demonstrated by numerical experiments.
基金supported by the National Natural Science Foundation of China(6120113461201135)+2 种基金the 111 Project(B08038)the Fundamental Research Funds for the Central Universities(72124669)the Open Research Fund of the Academy of Application(2014CXJJ-TX06)
文摘By using the sparsity of frequency hopping(FH) signals,an underdetermined blind source separation(UBSS) algorithm is presented. Firstly, the short time Fourier transform(STFT) is performed on the mixed signals. Then, the mixing matrix, hopping frequencies, hopping instants and the hooping rate can be estimated by the K-means clustering algorithm. With the estimated mixing matrix, the directions of arrival(DOA) of source signals can be obtained. Then, the FH signals are sorted and the FH pattern is obtained. Finally, the shortest path algorithm is adopted to recover the time domain signals. Simulation results show that the correlation coefficient between the estimated FH signal and the source signal is above 0.9 when the signal-to-noise ratio(SNR) is higher than 0 d B and hopping parameters of multiple FH signals in the synchronous orthogonal FH network can be accurately estimated and sorted under the underdetermined conditions.
文摘针对多地球同步轨道(Geostationary Earth Orbit,GEO)卫星多输入多输出(Multiple-Input Multiple-Output,MIMO)通信系统下行链路遭遇无人机集群恶意干扰场景中,干扰无人机数量时变且未知以及地球站观测信号信干比(Signal to Interference Ratio,SIR)和信噪比(Signal-to-Noise Ratio,SNR)低的问题,提出了特征金字塔网络(Feature Pyramid Network,FPN)和双向长短时记忆(Bidirectional Long Short Term Memory,BiLSTM)网络相结合的FPNBiLSTM网络架构及其训练方法,实现源数目时变的端到端欠定混合盲源分离.该算法无须进行干扰源数目估计,也无须经历传统的信号解调,即可从欠定混合的观测中直接提取期望信号的比特序列.仿真结果表明,与其他基于深度学习网络的欠定混合盲源分离算法相比,提出的算法在源信号数目时变且SNR和SIR均很低的场景中,如SNR=0 dB和SIR=-18 dB,算法的误码率可低至10-4,具有良好的干扰消除性能.