期刊文献+
共找到1,567篇文章
< 1 2 79 >
每页显示 20 50 100
Oil–water two-phase flow pattern analysis with ERT based measurement and multivariate maximum Lyapunov exponent 被引量:9
1
作者 谭超 王娜娜 董峰 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第1期240-248,共9页
Oil–water two-phase flow patterns in a horizontal pipe are analyzed with a 16-electrode electrical resistance tomography(ERT) system. The measurement data of the ERT are treated as a multivariate time-series, thus th... Oil–water two-phase flow patterns in a horizontal pipe are analyzed with a 16-electrode electrical resistance tomography(ERT) system. The measurement data of the ERT are treated as a multivariate time-series, thus the information extracted from each electrode represents the local phase distribution and fraction change at that location. The multivariate maximum Lyapunov exponent(MMLE) is extracted from the 16-dimension time-series to demonstrate the change of flow pattern versus the superficial velocity ratio of oil to water. The correlation dimension of the multivariate time-series is further introduced to jointly characterize and finally separate the flow patterns with MMLE. The change of flow patterns with superficial oil velocity at different water superficial velocities is studied with MMLE and correlation dimension, respectively, and the flow pattern transition can also be characterized with these two features. The proposed MMLE and correlation dimension map could effectively separate the flow patterns, thus is an effective tool for flow pattern identification and transition analysis. 展开更多
关键词 oil-water two-phase flow flow patterns electrical resistance tomography (ERT) multivariate time-series multivariate maximum Lyapunov exponent correlation dimension
在线阅读 下载PDF
Numerical investigation on the engraving process of a pyrotechnic actuator with an improved two-phase flow model of interior ballistic
2
作者 Yue Li Cong Liu +1 位作者 Cheng Cheng Genghui Jiang 《Defence Technology(防务技术)》 2025年第4期120-132,共13页
By combining with an improved model on engraving process,a two-phase flow interior ballistic model has been proposed to accurately predict the flow and energy conversion behaviors of pyrotechnic actuators.Using comput... By combining with an improved model on engraving process,a two-phase flow interior ballistic model has been proposed to accurately predict the flow and energy conversion behaviors of pyrotechnic actuators.Using computational fluid dynamics(CFD),the two-phase flow and piston engraving characteristics of a pyrotechnic actuator are investigated.Initially,the current model was utilized to examine the intricate,multi-dimensional flow,and energy conversion characteristics of the propellant grains and combustion gas within the pyrotechnic actuator chamber.It was discovered that the combustion gas on the wall's constant transition from potential to kinetic energy,along with the combined effect of the propellant motion,are what create the pressure oscillation within the chamber.Additionally,a numerical analysis was conducted to determine the impact of various parameters on the pressure oscillation and piston motion,including pyrotechnic charge,pyrotechnic particle size,and chamber structural dimension.The findings show that decreasing the pyrotechnic charge will lower the terminal velocity,while increasing and decreasing the pyrotechnic particle size will reduce the pressure oscillation in the chamber.The pyrotechnic particle size has minimal bearing on the terminal velocity.The results of this investigation offer a trustworthy forecasting instrument for comprehending and creating pyrotechnic actuator designs. 展开更多
关键词 Pyrotechnic actuator Engraving process two-phase flow Pressure oscillation
在线阅读 下载PDF
Identifying the enhancement mechanism of Al/MoO_(3) reactive multilayered films on the ignition ability of semiconductor bridge using a one-dimensional gas-solid two-phase flow model
3
作者 Jianbing Xu Yuxuan Zhou +3 位作者 Yun Shen Yueting Wang Yinghua Ye Ruiqi Shen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期168-179,共12页
Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement m... Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement mechanism of RMFs on semiconductor bridge(SCB)during the ignition process is crucial for the engineering and practical application of advanced initiator and pyrotechnics devices.In this study,a one-dimensional(1D)gas-solid two-phase flow ignition model was established to study the ignition process of ESCB to charge particles based on the reactivity of Al/MoO_(3) RMFs.In order to fully consider the coupled exothermic between the RMFs and the SCB plasma during the ignition process,the heat release of chemical reaction in RMFs was used as an internal heat source in this model.It is found that the exothermal reaction in RMFs improved the ignition performance of SCB.In the process of plasma rapid condensation with heat release,the product of RMFs enhanced the heat transfer process between the gas phase and the solid charge particle,which accelerated the expansion of hot plasma,and heated the solid charge particle as well as gas phase region with low temperature.In addition,it made up for pressure loss in the gas phase.During the plasma dissipation process,the exothermal chemical reaction in RMFs acted as the main heating source to heat the charge particle,making the surface temperature of the charge particle,gas pressure,and gas temperature rise continuously.This result may yield significant advantages in providing a universal ignition model for miniaturized ignition devices. 展开更多
关键词 Ignition enhancement mechanism 1D gas-solid two-phase flow Al/MoO_(3)reactive multilayered films Semiconductor bridge Miniaturized ignition device
在线阅读 下载PDF
Flow pattern and pressure drop of gas-liquid two-phase swirl flow in a horizontal pipe 被引量:6
4
作者 RAO Yong-chao DING Bo-yang +2 位作者 WANG Shu-li WANG Zi-wen ZHOU Shi-dong 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第9期2528-2542,共15页
The gas-liquid two-phase swirl flow can increase the gas-liquid two-phase contact area and enhance the heat and mass transfer efficiency between gas and liquid.The swirl flow has important practical application value ... The gas-liquid two-phase swirl flow can increase the gas-liquid two-phase contact area and enhance the heat and mass transfer efficiency between gas and liquid.The swirl flow has important practical application value for promoting gas hydrate formation and ensuring the flow safe of natural gas hydrate slurry.The experimental section was made of plexiglass pipe and the experimental medium was air and water.The flow pattern of the gas-liquid two-phase swirl flow in the horizontal pipe was divided,according to a high-definition camera and the overall characteristics of the gas-liquid interface.The flow pattern map of the gas-liquid two-phase swirl flow in a horizontal pipe was studied.The influence of the flow velocity and vane parameters on pressure drop was investigated.Two types of gas-liquid two-phase swirl flow pressure drop models was established.The homogeneous-phase and split-phase pressure drop models have good prediction on swirl bubble flow,swirl dispersed flow,swirl annular flow and swirl stratified flow,and the predictive error band is not more than 20%. 展开更多
关键词 swirl flow two-phase flow flow pattern swirl number pressure drop
在线阅读 下载PDF
Numerical simulation and analysis of solid-liquid two-phase threedimensional unsteady flow in centrifugal slurry pump 被引量:17
5
作者 吴波 汪西力 +1 位作者 LIU Hui 徐海良 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第8期3008-3016,共9页
Based on RNG k-ε turbulence model and sliding grid technique, solid-liquid two-phase three-dimensional(3-D) unsteady turbulence of full passage in slurry pump was simulated by means of Fluent software. The effects of... Based on RNG k-ε turbulence model and sliding grid technique, solid-liquid two-phase three-dimensional(3-D) unsteady turbulence of full passage in slurry pump was simulated by means of Fluent software. The effects of unsteady flow characteristics on solid-liquid two-phase flow and pump performance were researched under design condition. The results show that clocking effect has a significant influence on the flow in pump, and the fluctuation of flow velocity and pressure is obvious, particularly near the volute tongue, at the position of small sections of volute and within diffuser. Clocking effect has a more influence on liquid-phase than on solid-phase, and the wake-jet structure of relative velocity of solid-phase is less obvious than liquid-phase near the volute tongue and the impeller passage outlet. The fluctuation of relative velocity of solid-phase flow is 7.6% smaller than liquid-phase flow at the impeller outlet on circular path. Head and radial forces of the impeller are 8.1% and 85.7% of fluctuation, respectively. The results provide a theoretical basis for further research for turbulence, improving efficient, reducing the hydraulic losses and wear. Finally, field tests were carried out to verify the operation and wear of slurry pump. 展开更多
关键词 slurry pump solid-liquid two-phase flow unsteady flow 3-D full passage numerical simulation
在线阅读 下载PDF
Numerical simulation of two-phase flow in fractured porous media using streamline simulation and IMPES methods and comparing results with a commercial software 被引量:7
6
作者 Mahmoud Ahmadpour Majid Siavashi Mohammad Hossein Doranehgard 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第10期2630-2637,共8页
Streamline simulation is developed to simulate waterflooding in fractured reservoirs. Conventional reservoir simulation methods for fluid flow simulation in large and complex reservoirs are very costly and time consum... Streamline simulation is developed to simulate waterflooding in fractured reservoirs. Conventional reservoir simulation methods for fluid flow simulation in large and complex reservoirs are very costly and time consuming. In streamline method, transport equations are solved on one-dimensional streamlines to reduce the computation time with less memory for simulation. First, pressure equation is solved on an Eulerian grid and streamlines are traced. Defining the "time of flight", saturation equations are mapped and solved on streamlines. Finally, the results are mapped back on Eulerian grid and the process is repeated until the simulation end time. The waterflooding process is considered in a fractured reservoir using the dual porosity model. Afterwards, a computational code is developed to solve the same problem by the IMPES method and the results of streamline simulation are compared to those of the IMPES and a commercial software. Finally, the accuracy and efficiency of streamline simulator for simulation of two-phase flow in fractured reservoirs has been proved. 展开更多
关键词 two-phase flow porous media fractured reservoirs streamline simulation dual porosity implicit pressure-explicit saturation
在线阅读 下载PDF
Reconstructing bubble profiles from gas-liquid two-phase flow data using agglomerative hierarchical clustering method 被引量:2
7
作者 WU Dong-ling SONG Yan-po +1 位作者 PENG Xiao-qi GAO Dong-bo 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第8期2056-2067,共12页
The knowledge of bubble profiles in gas-liquid two-phase flows is crucial for analyzing the kinetic processes such as heat and mass transfer, and this knowledge is contained in field data obtained by surface-resolved ... The knowledge of bubble profiles in gas-liquid two-phase flows is crucial for analyzing the kinetic processes such as heat and mass transfer, and this knowledge is contained in field data obtained by surface-resolved computational fluid dynamics (CFD) simulations. To obtain this information, an efficient bubble profile reconstruction method based on an improved agglomerative hierarchical clustering (AHC) algorithm is proposed in this paper. The reconstruction method is featured by the implementations of a binary space division preprocessing, which aims to reduce the computational complexity, an adaptive linkage criterion, which guarantees the applicability of the AHC algorithm when dealing with datasets involving either non-uniform or distorted grids, and a stepwise execution strategy, which enables the separation of attached bubbles. To illustrate and verify this method, it was applied to dealing with 3 datasets, 2 of them with pre-specified spherical bubbles and the other obtained by a surface-resolved CFD simulation. Application results indicate that the proposed method is effective even when the data include some non-uniform and distortion. 展开更多
关键词 bubble profile reconstruction gas-liquid two-phase flow clustering method surface-resolved computational fluid dynamics (CFD) distorted bubble shape
在线阅读 下载PDF
Equations of two-phase flow in spray chamber
8
作者 李新禹 张志红 +1 位作者 金星 徐杰 《Journal of Central South University》 SCIE EI CAS 2009年第S1期140-144,共5页
The downstream water-air heat and moisture transfer system in a moving coordinate was studied. The relationship between the diameter of the misted droplets and the spray pressure was determined. Based on the theory of... The downstream water-air heat and moisture transfer system in a moving coordinate was studied. The relationship between the diameter of the misted droplets and the spray pressure was determined. Based on the theory of the relative velocity,the two-phase flow mode of the spray chamber and the efficiency equation for heat and moisture exchange were established. Corrections were carried out for the efficiency equation with spray pressure of 157 kPa. The results show that the pressure plays an important part in determining the efficiency of heat and moisture exchange. When the spray pressure is less than 157 kPa,better coincidence is noticed between the theoretical analysis and the test results with the error less than 6%. Greater error will be resulted in the case when the spray pressure is beyond 157 kPa. After the correction treatment,the coincidence between the theoretical and the experimental results is greatly improved. 展开更多
关键词 SPRAY CHAMBER two-phase flow heat and MOISTURE EXCHANGE
在线阅读 下载PDF
Numerical study on two-phase flow in horizontal pipe
9
作者 WU Yuting XU Kewei KIM Hyoungbum 《排灌机械工程学报》 EI CSCD 北大核心 2021年第4期379-385,425,共8页
Two-phase flow in a horizontal pipe was investigated by using numerical and experimental visualization methods.A horizontal pipe was built for qualitative and quantitative flow visualization.The length of horizontal p... Two-phase flow in a horizontal pipe was investigated by using numerical and experimental visualization methods.A horizontal pipe was built for qualitative and quantitative flow visualization.The length of horizontal pipe flow system was 9.5 m and the inner diameter was 51 mm.High-speed video method was used for the qualitative visualization and PIV method was applied for the quantitative visua-lization.The same geometry model was used for the numerical study.Three flow regimes including stratified flow,elongated bubble and slug flow field were generated and visualized by using numerical and experimental methods.The results show that the numerical simulation results are qualitatively si-milar to that of the experimental results.In addition,more quantitative results can be analyzed by numerical method.Development and decay process of slug flow was investigated,showing that the decay of slug heavily depends on the magnitude of nose velocity and its lasting time.It can also be found that the liquid superficial velocity plays a significant role in affecting the slug frequency.When keeping the gas superficial velocity constant,the frequency will increase with the liquid superficial velocity. 展开更多
关键词 two-phase flow CFD PIV slug flow slug frequency
在线阅读 下载PDF
Three-dimensional CFD simulation of inlet structure flow in pumping station based on Eulerian solid- liquid two-phase flow model
10
作者 Mi Zihao Zhou Daqing Mao Yuanting 《排灌机械工程学报》 EI CSCD 北大核心 2015年第6期494-498,共5页
Sediment deposition in the pumping station has a huge negative impact on unit operation.The three-dimensional CFD method has been used to simulate inlet structure flow in pumping station based on the Eulerian solid- l... Sediment deposition in the pumping station has a huge negative impact on unit operation.The three-dimensional CFD method has been used to simulate inlet structure flow in pumping station based on the Eulerian solid- liquid two-phase flow model. The numerical results of the preliminary scheme show that sediment deposition occurs in the forebay of pumping station because of poor flow pattern therein. In order to improve hydraulic configuration in the forebay,one modified measure reconstructs water diversion weir shape,and another measure sets a water retaining sill in the approach channel. The simulation results of the modified scheme prove that back flow in the forebay has been eliminated and the sediment deposition region has also been reduced. 展开更多
关键词 pumping station FOREBAY sediment deposition Eulerian two-phase flow model
在线阅读 下载PDF
Application of time–frequency entropy from wake oscillation to gas–liquid flow pattern identification 被引量:6
11
作者 HUANG Si-shi SUN Zhi-qiang +1 位作者 ZHOU Tian ZHOU Jie-min 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第7期1690-1700,共11页
Gas–liquid two-phase flow abounds in industrial processes and facilities. Identification of its flow pattern plays an essential role in the field of multiphase flow measurement. A bluff body was introduced in this s... Gas–liquid two-phase flow abounds in industrial processes and facilities. Identification of its flow pattern plays an essential role in the field of multiphase flow measurement. A bluff body was introduced in this study to recognize gas–liquid flow patterns by inducing fluid oscillation that enlarged differences between each flow pattern. Experiments with air–water mixtures were carried out in horizontal pipelines at ambient temperature and atmospheric pressure. Differential pressure signals from the bluff-body wake were obtained in bubble, bubble/plug transitional, plug, slug, and annular flows. Utilizing the adaptive ensemble empirical mode decomposition method and the Hilbert transform, the time–frequency entropy S of the differential pressure signals was obtained. By combining S and other flow parameters, such as the volumetric void fraction β, the dryness x, the ratio of density φ and the modified fluid coefficient ψ, a new flow pattern map was constructed which adopted S(1–x)φ and (1–β)ψ as the vertical and horizontal coordinates, respectively. The overall rate of classification of the map was verified to be 92.9% by the experimental data. It provides an effective and simple solution to the gas–liquid flow pattern identification problems. 展开更多
关键词 gas–liquid two-phase flow wake oscillation flow pattern map time–frequency entropy ensemble empirical mode decomposition Hilbert transform
在线阅读 下载PDF
Quality evaluation of layerlike backfilling and flow pattern of backfill slurry in stope 被引量:11
12
作者 彭欣 李夕兵 +1 位作者 张钦礼 王新民 《Journal of Central South University of Technology》 EI 2007年第4期580-583,共4页
Stability condition and quality evaluation formula of layerlike backfilling roof,Q≥C,where Q denotes is quality index depending on allowable compressive or tensile strength and integrity of backfilling,and C is the t... Stability condition and quality evaluation formula of layerlike backfilling roof,Q≥C,where Q denotes is quality index depending on allowable compressive or tensile strength and integrity of backfilling,and C is the technical index depending on mining method and backfilling technology,were inferred according to simply supported beam theorem.Technical treatment measures for instable backfilling roof,including optimum of appropriate filling materials and dosage for excellent flow property and reduction of backfill cost.It is proved that slope equation of backfill slurry in a stope to be filled is y=hexp[x2/(2σ)2)],where h is height of cone and σ2 is mean square,and that optimum drainage point of backfill slurry can be determined by the equation and sizes of stope.Case study indicates that the results can give a theoretical support for quality evaluation and control of layerlike backfilling. 展开更多
关键词 layerlike backfilling quality evaluation flow pattern simply supported beam
在线阅读 下载PDF
Structure and production fluid flow pattern of post-fracturing high-rank coal reservoir in Southern Qinshui Basin 被引量:4
13
作者 刘世奇 桑树勋 +2 位作者 朱启朋 刘会虎 高贺凤 《Journal of Central South University》 SCIE EI CAS 2014年第10期3970-3982,共13页
Field geological work, field engineering monitoring, laboratory experiments and numerical simulation were used to study the development characteristics of pore-fracture system and hydraulic fracture of No.3 coal reser... Field geological work, field engineering monitoring, laboratory experiments and numerical simulation were used to study the development characteristics of pore-fracture system and hydraulic fracture of No.3 coal reservoir in Southern Qinshui Basin. Flow patterns of methane and water in pore-fracture system and hydraulic fracture were discussed by using limit method and average method. Based on the structure model and flow pattern of post-fracturing high-rank coal reservoir, flow patterns of methane and water were established. Results show that seepage pattern of methane in pore-fracture system is linked with pore diameter, fracture width, coal bed pressure and flow velocity. While in hydraulic fracture, it is controlled by fracture height, pressure and flow velocity. Seepage pattern of water in pore-fracture system is linked with pore diameter, fracture width and flow velocity. While in hydraulic fracture, it is controlled by fracture height and flow velocity. Pores and fractures in different sizes are linked up by ultramicroscopic fissures, micro-fissures and hydraulic fracture. In post-fracturing high-rank coal reservoir, methane has level-three flow and gets through triple medium to the wellbore; and water passes mainly through double medium to the wellbore which is level-two flow. 展开更多
关键词 flow pattern structure model high-rank coal reservoir hydraulic fracture Southern Qinshui Basin
在线阅读 下载PDF
An adaptive electrical resistance tomography sensor with flow pattern recognition capability 被引量:4
14
作者 WANG Pai LI Yang-bo +2 位作者 WANG Mei QIN Xue-bin LIU Lang 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第3期612-622,共11页
The all traditional electrical resistance tomography (ERT) sensors have a static structure, which cannot satisfy the intelligent requirements for adaptive optimization to ERT sensors that is subject to flow pattern ch... The all traditional electrical resistance tomography (ERT) sensors have a static structure, which cannot satisfy the intelligent requirements for adaptive optimization to ERT sensors that is subject to flow pattern changes during the real-time detection of two-phase flow. In view of this problem, an adaptive ERT sensor with a dynamic structure is proposed. The electrodes of the ERT sensor are arranged in an array structure, the flow pattern recognition technique is introduced into the ERT sensor design and accordingly an ERT flow pattern recognition method based on signal sparsity is proposed. This method uses the sparse representation of the signal to express the sampling voltage of the ERT system as a sparse combination and find its sparse solution to achieve the classification of different flow patterns. With the introduction of flow identification information, the sensor has an intelligent function of adaptively and dynamically adapting the sensor structure according to the real-time flow pattern change. The experimental results show that the sensor can automatically identify four typical flow patterns: core flow, bubble flow, laminar flow and circulation flow with recognition rates of 91%, 93%, 90% and 88% respectively. For different flow patterns, the dynamically optimized sensor can significantly improve the quality of ERT image reconstruction. 展开更多
关键词 electrical resistance tomography adaptive sensor sparse representation flow pattern identification
在线阅读 下载PDF
Numerical investigation of flow pattern and components of three-dimensional velocity around a submerged T-shaped spur dike in a 90° bend 被引量:3
15
作者 Mohammad Vaghefi Yaser Safarpoor Maryam Akbari 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第11期2984-2998,共15页
Spur dike is one of the river training structures. This work presented a numerical simulation of flow field and three-dimensional velocity around a T-shaped spur dike located in bend using SSIIM model. The main object... Spur dike is one of the river training structures. This work presented a numerical simulation of flow field and three-dimensional velocity around a T-shaped spur dike located in bend using SSIIM model. The main objective of this work is to investigate the three-dimensional velocities and streamlines at transverse and longitudinal sections and plan views around the T-shaped spur dike in different submergence ratios(0, 5%, 15%, 25% and 50%). It is concluded that by increasing the submergence ratio from 5% to 50%, the maximum of scour is reduced; the maximum of longitudinal velocity increases by 7.7% and occurs at the water surface in spur dike axis. Near the bed, the maximum of vertical velocity occurs at the end of spur wing. By analyzing the streamlines at transverse sections, the followings were deduced for different submergence ratios: different dimensions and different positions of vortices around the spur dike. 展开更多
关键词 T-shaped spur dike flow pattern submergence ratio SSIIM model
在线阅读 下载PDF
Field synergy analysis of different flow patterns in falling-film dehumidification system with horizontal pipes 被引量:1
16
作者 NIU Run-ping KUANG Da-qing +1 位作者 WANG Shi-zheng CHEN Xiao-yi 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第8期2353-2366,共14页
Effects of the flow pattern of intertubular liquid film on mass and heat transfer synergies in a falling-film dehumidification system with horizontal pipes are studied.A flow model of the dehumidifying solution betwee... Effects of the flow pattern of intertubular liquid film on mass and heat transfer synergies in a falling-film dehumidification system with horizontal pipes are studied.A flow model of the dehumidifying solution between horizontal pipes is established using Fluent software,the rule of transitions of the flow pattern between pipes is studied,critical Reynolds numbers of flow pattern transitions are obtained,and the accuracy of the model is verified by experiments.The mass transfer synergy angle and heat transfer synergy angle are respectively used as evaluation criteria for the mass transfer synergy and heat transfer synergy,and distribution laws of the synergy angles for droplet,droplet columnar and curtain flow patterns are obtained.Simulation results show that the mass transfer synergy angles corresponding to droplet,droplet columnar and curtain flow patterns all rise to a plateau with time.The mean mass-transfer synergy angle is 98°for the droplet flow pattern,higher than 96.5°for the droplet columnar flow pattern and 95°for the curtain flow pattern.The results show that the mass transfer synergy of the droplet flow pattern is better than that of the droplet columnar flow pattern and that of the curtain flow pattern. 展开更多
关键词 film falling between horizontal pipes fluent software flow pattern of liquid film synergy angle mass and heat transfer
在线阅读 下载PDF
Dynamic enhanced multi-slice spiral CT in evaluation of blood flow patterns of solitary pulmonary nodules with enhancement 被引量:4
17
作者 LIShenjiang XIAOXiangsheng +5 位作者 LIUShiyuan LIHuimin LIChengzhou ZHANGChenshi TAOZhiwei YANGChunshan 《中国肺癌杂志》 CAS 2004年第6期520-525,共6页
Objective To investigate the methods of dynamic enhanced multi-slice spiral CT in evaluation of blood flow patterns of solitary pulmonary nodules (SPNs) with enhancement. Methods Seventy-eight patients with SPNs (≤4 ... Objective To investigate the methods of dynamic enhanced multi-slice spiral CT in evaluation of blood flow patterns of solitary pulmonary nodules (SPNs) with enhancement. Methods Seventy-eight patients with SPNs (≤4 cm) with strong enhancement underwent dynamic multi-slice spiral CT (Marconi Mx8000) scan before and after contrast enhancement by injecting contrast material with a rate of 4 mL/s. For the 40 patients in protocol one, one scan was obtained every 2 seconds during 15--45 and 75--105 seconds after injection, while for the 38 patients in protocol two, one scan was obtained every 2 seconds during 11--41 and 71--101 seconds. For all the patients, one scan was obtained every 30 seconds during 2--9 minutes. The section thickness was 2.5 mm for lesions ≤3 cm and 5 mm for lesions >3 cm. Standard algorithm was used in the image reconstruction. Precontrast and postcontrast attenuation on every scan was recorded. The perfusion, peak height, ratio of peak height of the SPN to that of the aorta and mean transit time were calculated. Results The peak height, perfusion, ratio of peak height of the SPN to that of the aorta and mean transit time in malignant SPNs were 34.85 Hu±10.87 Hu, 30.37 ml/(min·100 g)±11.14 ml/(min·100 g), 13.78%± 3.96% , 14.19 s±6.19 s respectively in protocol one, while those in protocol two were 36.62 Hu±10.75 Hu, 30.01 ml/(min·100 g)±8.10 ml/(min·100 g), 14.70 %±4.71%, 13.91 s±4.82 s respectively. No statistically significant differences were found between the peak height (t= 0.673, P=0.503), perfusion (t= 0.152 , P=0.880), ratio of peak height of the SPN to that of the aorta (t= 0.861, P=0.393) and mean transit time (t= 0.199, P=0.843) in malignant SPNs measured in protocol one and those measured in protocol two. All mean transit time in protocol two (36/36) were obtained, but only part of them (25/32) were obtained in protocol one. Conclusion Dynamic enhanced multi-slice spiral CT is a non-invasive method for quantitative evaluation of blood flow patterns of SPNs with enhancement and scans beginning at 11 seconds after injection of contrast material is suggested. 展开更多
关键词 显微镜 血流动力学 螺旋CT 肺部结节
在线阅读 下载PDF
Cavity Flow Pattern Design for Supercaviting Torpedo
18
作者 裴譞 张宇文 +1 位作者 袁绪龙 邓飞 《Defence Technology(防务技术)》 SCIE EI CAS 2010年第4期262-268,共7页
The flow pattern design of supercaviting torpedo,like the shape design of conventional bedewed torpedo,occupies an important position in torpedo system design.In this paper,the flow pattern design issues were studied ... The flow pattern design of supercaviting torpedo,like the shape design of conventional bedewed torpedo,occupies an important position in torpedo system design.In this paper,the flow pattern design issues were studied systematically.A set of design criteria and main design requirements were proposed,and the design method and procedure were established.Moreover,the determination method of necessary parameters of cavitator and ventilated system for desired cavity flow pattern was given.Considered the speed and pressure disturbances in the torpedo navigation,a concept named margin design was proposed to solve the supercavitation deformation and instability caused by the disturbances. 展开更多
关键词 HYDRODYNAMICS supercaviting torpedo flow pattern design criterion design method design margin
在线阅读 下载PDF
两相流实验智能化升级及教学研究
19
作者 李辉 吕卓然 +3 位作者 符泰然 霍雨佳 许兆峰 陆规 《实验技术与管理》 北大核心 2025年第3期174-180,共7页
两相流热工参数测量是能源动力学科一项重要的教学内容,可视化实验系统能够帮助学生直观认识两相流基本现象、流型及其演化规律,在流体力学、传热学及多相流教学中具有重要作用。该文根据两相流实验教学需求,结合最新的人工智能及数字... 两相流热工参数测量是能源动力学科一项重要的教学内容,可视化实验系统能够帮助学生直观认识两相流基本现象、流型及其演化规律,在流体力学、传热学及多相流教学中具有重要作用。该文根据两相流实验教学需求,结合最新的人工智能及数字孪生技术,在原先开发的数字化两相流流型演示实验系统基础上做了智能化升级,采用小波分析和灰度直方图分析两种特征向量提取方法,以及特征向量法及卷积神经网络直接图像识别法这两种智能算法用于识别两相流流型,拓展了实验台功能,丰富了教学内容,实现了多学科交叉融合。该文开发的基于人工智能算法的流型识别方法,也为目前两相流含气率测量无法兼顾精度和效率的瓶颈问题提出了新的解决思路。 展开更多
关键词 气液两相流 流型识别 含气率 人工神经网络 特征提取
在线阅读 下载PDF
浸没系统两相流致压力脉动特性数值分析
20
作者 袁志成 陈利民 +1 位作者 叶天明 曾令杰 《力学学报》 北大核心 2025年第10期2297-2307,共11页
浸没系统通过在投影物镜与硅片之间维持稳定的液体环境,成为浸没式光刻机实现更高分辨率光刻的关键组成部分.为了保证浸没流场的均一和稳定,浸没系统必须依赖负压抽排实现浸没流场的动态密封.然而,气-液两相抽排会引起严重的流致振动问... 浸没系统通过在投影物镜与硅片之间维持稳定的液体环境,成为浸没式光刻机实现更高分辨率光刻的关键组成部分.为了保证浸没流场的均一和稳定,浸没系统必须依赖负压抽排实现浸没流场的动态密封.然而,气-液两相抽排会引起严重的流致振动问题,从而影响双工作台的运动精度,导致曝光线条堆叠和交错等缺陷.针对浸没系统两相抽排亚毫米管道,建立气-液“对冲”流动物理模型.借助开源软件OpenFOAM对管内流型和流致压力脉动特性进行数值分析.研究结果表明,气-液“对冲”流动在回收管底端碰撞交汇形成涡流区,进而诱发管内气-液界面失稳和两相压力脉动.该两相压力脉动特性近似为白噪声,为多个正弦波分量与宽频带白噪声叠加.此外,气密封速度、硅片表面润湿特性和曝光扫描速度对气-液界面流型及管内压力波动特性影响较大.尤其当后退接触角约为65°时,两相界面较为稳定,两相压力脉动可以得到有效抑制.本研究从机理上揭示了浸没系统振动产生的根源,为浸没头结构优化和工艺参数调节提供了理论依据与技术支撑,对提升浸没式光刻机的性能和良品率具有重要工程价值. 展开更多
关键词 浸没式光刻 负压抽排 两相流型 流致振动
在线阅读 下载PDF
上一页 1 2 79 下一页 到第
使用帮助 返回顶部