This work uses refined first-order shear theory to analyze the free vibration and transient responses of double-curved sandwich two-layer shells made of auxetic honeycomb core and laminated three-phase polymer/GNP/fib...This work uses refined first-order shear theory to analyze the free vibration and transient responses of double-curved sandwich two-layer shells made of auxetic honeycomb core and laminated three-phase polymer/GNP/fiber surface subjected to the blast load.Each of the two layers that make up the double-curved shell structure is made up of an auxetic honeycomb core and two laminated sheets of three-phase polymer/GNP/fiber.The exterior is supported by a Kerr elastic foundation with three characteristics.The key innovation of the proposed theory is that the transverse shear stresses are zero at two free surfaces of each layer.In contrast to previous first-order shear deformation theories,no shear correction factor is required.Navier's exact solution was used to treat the double-curved shell problem with a single title boundary,while the finite element technique and an eight-node quadrilateral were used to address the other boundary requirements.To ensure the accuracy of these results,a thorough comparison technique is employed in conjunction with credible statements.The problem model's edge cases allow for this kind of analysis.The study's findings may be used in the post-construction evaluation of military and civil works structures for their ability to sustain explosive loads.In addition,this is also an important basis for the calculation and design of shell structures made of smart materials when subjected to shock waves or explosive loads.展开更多
Optical multilayer thin film structures have been widely used in numerous photonic applications.However,existing inverse design methods have many drawbacks because they either fail to quickly adapt to different design...Optical multilayer thin film structures have been widely used in numerous photonic applications.However,existing inverse design methods have many drawbacks because they either fail to quickly adapt to different design targets,or are difficult to suit for different types of structures,e.g.,designing for different materials at each layer.These methods also cannot accommodate versatile design situations under different angles and polarizations.In addition,how to benefit practical fabrications and manufacturing has not been extensively considered yet.In this work,we introduce OptoGPT(Opto Generative Pretrained Transformer),a decoder-only transformer,to solve all these drawbacks and issues simultaneously.展开更多
In the future development direction of the sixth generation(6G)mobile communication,several communication models are proposed to face the growing challenges of the task.The rapid development of artificial intelligence...In the future development direction of the sixth generation(6G)mobile communication,several communication models are proposed to face the growing challenges of the task.The rapid development of artificial intelligence(AI)foundation models provides significant support for efficient and intelligent communication interactions.In this paper,we propose an innovative semantic communication paradigm called task-oriented semantic communication system with foundation models.First,we segment the image by using task prompts based on the segment anything model(SAM)and contrastive language-image pretraining(CLIP).Meanwhile,we adopt Bezier curve to enhance the mask to improve the segmentation accuracy.Second,we have differentiated semantic compression and transmission approaches for segmented content.Third,we fuse different semantic information based on the conditional diffusion model to generate high-quality images that satisfy the users'specific task requirements.Finally,the experimental results show that the proposed system compresses the semantic information effectively and improves the robustness of semantic communication.展开更多
As the inaugural Vietnam International Trade Fair for Apparel,Textiles and Textile Technologies(VIATT)drew curtains on 1 March 2024,Messe Frankfurt's first inte-grated textile fair in Asia has positioned itself as...As the inaugural Vietnam International Trade Fair for Apparel,Textiles and Textile Technologies(VIATT)drew curtains on 1 March 2024,Messe Frankfurt's first inte-grated textile fair in Asia has positioned itself as an essential platform for the entire textile value chain.Covering three major industry sectors,the three-day fair attracted 17262 visits from 55 countries and regions,connecting with 409 exhibitors from 17 countries and regions.In addition to atracting top-quality suppliers,participants also noted the high calibre of buyers and the dlear potential for growth at future editions.展开更多
A model is proposed to evaluate the,effective modufi of a composite reinforced by two-layered spherical inclusions.This model is based on the localisation problem of a two- layered spherical inclusion embedded in an i...A model is proposed to evaluate the,effective modufi of a composite reinforced by two-layered spherical inclusions.This model is based on the localisation problem of a two- layered spherical inclusion embedded in an infinite matrix.The interations of the reinforced phases are taken into account by using the average matrix stress concept.When the external layer vanishes,the proposed model reduces to the classical Mori-Tanaka's model for spherical inclusions.Theoretical results for the composite of polyester matrix filled by hollow glass spheres and voids show excellent agreement with experimental results.展开更多
A weak nonlinear model of a two-layer barotropic ocean with Rayleigh dissipation is built.The analytic asymptotic solution is derived in the mid-latitude stationary wind field,and the physical meaning of the correspon...A weak nonlinear model of a two-layer barotropic ocean with Rayleigh dissipation is built.The analytic asymptotic solution is derived in the mid-latitude stationary wind field,and the physical meaning of the corresponding problem is discussed.展开更多
Predicting and estimating the response of sub- way tunnel to adjacent excavation of foundation pit is a research focus in the field of underground engineering. Based on the principle of two-stage method and incre- men...Predicting and estimating the response of sub- way tunnel to adjacent excavation of foundation pit is a research focus in the field of underground engineering. Based on the principle of two-stage method and incre- mental method, an analytic approach is suggested in this paper to solve this problem in an accurate and rapid way, and the upheavals of tunnel due to adjacent excavation are solved by analytic method. Besides, the presented method is used in the practical engineering case of Shenzhen Metro Line 11 and verified by numerical simulation and in situ measurement. Finally, a parametric analysis is performed to investigate the influence of different factors on tunnel's deflection. Some useful conclusions have been drawn from the research as below: The deflection results of tunnel obtained from analytic method are nearly consistent with the results getting from numerical analysis and measured data, which verified the accuracy and rationality of pre- sented method. The excavation size has a significant impact on both the displacement values and influenced range of tunnel. However, the relative distance only impacts the displacement values of tunnel, but not the influenced range of tunnel. It may provide certain reference to analyze the deflection of subway tunnel influenced by adjacent excavation.展开更多
Many new forms of Boussinesq-type equations have been developed to extend the range of applicability of the classical Boussinesq equations to deeper water in the Study of the surface waves. One approach was used by Nw...Many new forms of Boussinesq-type equations have been developed to extend the range of applicability of the classical Boussinesq equations to deeper water in the Study of the surface waves. One approach was used by Nwogu (1993. J. Wtrw. Port Coastal and Oc. Eng. 119, 618-638) to improve the linear dispersion characteristics of the classical Boussinesq equations by using the velocity at an arbitrary level as the velocity variable in derived equations and obtain a new form of Boussinesq-type equations, in which the dispersion property can be optimized by choosing the velocity variable at an adequate level. In this paper, a set of Boussinesq-type equations describing the motions of the interracial waves propagating alone the interface between two homogeneous incompressible and inviscid fluids of different densities with a free surface and a variable water depth were derived using a method similar to that used by Nwogu (1993. J. Wtrw. Port Coastal and Oc. Eng. 119, 618-638) for surface waves. The equations were expressed in terms of the displacements of free surface and density-interface, and the velocity vectors at arbitrary vertical locations in the upper layer and the lower layer (or depth-averaged velocity vector across each layer) of a two-layer fluid. As expected, the equations derived in the present work include as special cases those obtained by Nwogu (1993, J. Wtrw. Port Coastal and Oc. Eng. 119, 618-638) and Peregrine (1967, J. Fluid Mech. 27, 815-827) for surface waves when the density of the upper fluid is taken as zero.展开更多
The problem of oblique wave (internal wave) propagation over a small deformation in a channel flow consisting of two layers was considered. The upper fluid was assumed to be bounded above by a rigid lid, which is an...The problem of oblique wave (internal wave) propagation over a small deformation in a channel flow consisting of two layers was considered. The upper fluid was assumed to be bounded above by a rigid lid, which is an approximation for the free surface, and the lower one was bounded below by an impermeable bottom surface having a small deformation; the channel was unbounded in the horizontal directions. Assuming irrotational motion, the perturbation technique was employed to calculate the first-order corrections of the velocity potential in the two fluids by using Green's integral theorem suitably with the introduction of appropriate Green's functions. Those functions help in calculating the reflection and transmission coefficients in terms of integrals involving the shape ftmction c(x) representing the bottom deformation. Three-dimensional linear water wave theory was utilized for formulating the relevant boundary value problem. Two special examples of bottom deformation were considered to validate the results. Consideration of a patch of sinusoidal ripples (having the same wave number) shows that the reflection coefficient is an oscillatory function of the ratio of twice the x-component of the wave number to the ripple wave number. When this ratio approaches one, the theory predicts a resonant interaction between the bed and the interface, and the reflection coefficient becomes a multiple of the number of ripples. High reflection of incident wave energy occurs if this number is large. Similar results were observed for a patch of sinusoidal ripples having different wave numbers. It was also observed that for small angles of incidence, the reflected energy is greater compared to other angles of incidence up to π/ 4. These theoretical observations are supported by graphical results.展开更多
The problem of wave scattering by undulating bed topography in a two-layer ocean is investigated on the basis of linear theory. In a two-layer fluid with the upper layer having a free surface, there exist two modes of...The problem of wave scattering by undulating bed topography in a two-layer ocean is investigated on the basis of linear theory. In a two-layer fluid with the upper layer having a free surface, there exist two modes of waves propagating at both the free surface of the upper layer and the interface between the two layers. Due to a wave train of a particular mode incident on an obstacle which is bottom-standing on the lower layer, reflected and transmitted waves of both modes are created by the obstacle. For small undulations on the bottom of the lower layer, a perturbation method is employed to obtain first-order reflection and transmission coefficients of both modes for incident wave trains of again both modes in terms of integrals involving the bed-shape fimction. For sinusoidal undulations, numerical results are presented graphically to illustrate the energy transfer between the waves of different modes by the undulating bed.展开更多
Main factors, which should be considered in the classification of dyke foundation, are discussed in this paper. Engineering conditions should be taken into account when the levee safety is appraised based on engineeri...Main factors, which should be considered in the classification of dyke foundation, are discussed in this paper. Engineering conditions should be taken into account when the levee safety is appraised based on engineering geologic appraisement and classification. On the basis of safety appraisement, dyke foundation may be classified with regard of suitable reinforcement measures. Examples are presented to illustrate the instructive significance of dyke foundation classification to dyke reinforcement design.展开更多
The dynamic response of an infinite beam placed on a Pasternak foundation when the system was subjected to a moving load was investigated.We used the double Fourier transform and its inversion to solve the formulation...The dynamic response of an infinite beam placed on a Pasternak foundation when the system was subjected to a moving load was investigated.We used the double Fourier transform and its inversion to solve the formulations of the problem.A closed form analytic solution of the beam was obtained by the theorem of residues.We selected a numerical example to illustrate the dynamic response of the beam on Pasternak and Winkler foundations,respectively.We discuss the effect of the moving load velocity on the dynamic displacement response of the beam.The maximum deflection of the beam increases slightly with increased load velocity but increases significantly with reduced shear modulus of subgrade at a given velocity.The maximum deflection of a beam resting on a Pasternak foundation is much smaller than that of a beam on a Winkler foundation.展开更多
Based on the theory of coordinating action of building ground, foundation and structure, this paper presents a modified method for calculating additional stresses on buildings in mining areas by considering the joint ...Based on the theory of coordinating action of building ground, foundation and structure, this paper presents a modified method for calculating additional stresses on buildings in mining areas by considering the joint effect of cur- vature deformation and horizontal deformation on buildings. It points out that for buildings over the coal pillar, it is ad- visable to soften the intermediate ground of buildings when they are affected by mining. For buildings over the goaf, it is preferable to soften the ground at both ends of buildings. In order to enhance the ability of a building to resist tensile deformation, the key measure is to reinforce the bottom foundation of the building. In addition, the concept of “angle of break of building” is proposed. It is because of this angle that the protecting coal pillar is left, which is a better solution than prevailing solutions The findings provide a more scientific basis for mining under buildings.展开更多
Given the background of a transmission tower erected on a particular mining subsidence area,we used finite element modeling to analyze the anti-deformation performance of transmission towers under a number of differen...Given the background of a transmission tower erected on a particular mining subsidence area,we used finite element modeling to analyze the anti-deformation performance of transmission towers under a number of different load conditions,including horizontal foundation displacement,uneven vertical downward displacement,wind loads and icing conditions.The results show that the failure in stability of a single steel angle iron represents the limit of the tower given ground deformation.We calculated the corresponding limits of foundation displacements.The results indicate that compression displacement of the foundation is more dangerous than tension displacement.Under complex foundation displacement conditions,horizontal foundation displacement is a key factor leading to failure in the stability of towers.Under conditions of compression or tension displacement of the foundation,wind load becomes the key factor.Towers do not fail when foundation displacements are smaller than 1% (under tension) or 0.5% (under horizontal compression or single foundation subsidence) of the distance between two supports.展开更多
Electromagnetic wave scattering from multilayers consisting of two two-layer Caussian rough surfaces with lossless media is investigated in the Kirchhoff approximation (KA), with consideration of the shadowing effec...Electromagnetic wave scattering from multilayers consisting of two two-layer Caussian rough surfaces with lossless media is investigated in the Kirchhoff approximation (KA), with consideration of the shadowing effects. The tapered incident wave is introduced into the classic KA, and the bistatic scattering coefficient is redetermined. The advantage of this method is that it is faster in computation than the exact numerical methods. The numerical results show that the bistatic scattering coefficient calculated in the KA is in good agreement with that obtained by using the method of moment (MOM) over a most angular range, which indicates the validity of the KA proposed in our paper. Finally, the effects of the relative permittivity, the root-mean-square (RMS) height, the correlative length, and the average height between the two interfaces on the bistatic scattering coefficient are discussed in detail.展开更多
To ensure the safety of buildings surrounding foundation pits, a study was made on a settlement monitoring and trend prediction method. A statistical testing method for analyzing the stability of a settlement monitori...To ensure the safety of buildings surrounding foundation pits, a study was made on a settlement monitoring and trend prediction method. A statistical testing method for analyzing the stability of a settlement monitoring datum has been discussed. According to a comprehensive survey, data of 16 stages at operating control point, were verified by a standard t test to determine the stability of the operating control point. A stationary auto-regression model, AR(p), used for the observation point settlement prediction has been investigated. Given the 16 stages of the settlement data at an observation point, the applicability of this model was analyzed. Settlement of last four stages was predicted using the stationary auto-regression model AR (1); the maximum difference between predicted and measured values was 0.6 mm, indicating good prediction results of the model. Hence, this model can be applied to settlement predictions for buildings surrounding foundation pits.展开更多
The main objective of this study is to investigate the buckling analysis of CCSs reinforced by CNTs subjected to combined loading of hydrostatic pressure and axial compression resting on the twoparameter elastic found...The main objective of this study is to investigate the buckling analysis of CCSs reinforced by CNTs subjected to combined loading of hydrostatic pressure and axial compression resting on the twoparameter elastic foundation(T-P-EF).It is one of the first attempts to derive the governing equations of the CCSs reinforced with CNTs,based on a generalized first-order shear deformation shell theory(FSDST)which includes shell-foundation interaction.By adopting the extended mixing rule,the effective material properties of CCSs reinforced by CNTs with linear distributions are approximated by introducing some efficiency parameters.Three carbon nanotube distribution in the matrix,i.e.uniform distribution(U)and V and X-types linear distribution are taken into account.The stability equations are solved by using the Galerkin procedure to determine the combined buckling loads(CBLs)of the structure selected here.The numerical illustrations cover CBLs characteristics of CCSs reinforced by CNTs in the presence of the T-P-EF.Finally,a parametric study is carried out to study the influences of the foundation parameters,the volume fraction of carbon nanotubes and the types of reinforcement on the CBLs.展开更多
文摘This work uses refined first-order shear theory to analyze the free vibration and transient responses of double-curved sandwich two-layer shells made of auxetic honeycomb core and laminated three-phase polymer/GNP/fiber surface subjected to the blast load.Each of the two layers that make up the double-curved shell structure is made up of an auxetic honeycomb core and two laminated sheets of three-phase polymer/GNP/fiber.The exterior is supported by a Kerr elastic foundation with three characteristics.The key innovation of the proposed theory is that the transverse shear stresses are zero at two free surfaces of each layer.In contrast to previous first-order shear deformation theories,no shear correction factor is required.Navier's exact solution was used to treat the double-curved shell problem with a single title boundary,while the finite element technique and an eight-node quadrilateral were used to address the other boundary requirements.To ensure the accuracy of these results,a thorough comparison technique is employed in conjunction with credible statements.The problem model's edge cases allow for this kind of analysis.The study's findings may be used in the post-construction evaluation of military and civil works structures for their ability to sustain explosive loads.In addition,this is also an important basis for the calculation and design of shell structures made of smart materials when subjected to shock waves or explosive loads.
基金the National Science Foundation(PFI-008513 and FET-2309403)for the support of this work.
文摘Optical multilayer thin film structures have been widely used in numerous photonic applications.However,existing inverse design methods have many drawbacks because they either fail to quickly adapt to different design targets,or are difficult to suit for different types of structures,e.g.,designing for different materials at each layer.These methods also cannot accommodate versatile design situations under different angles and polarizations.In addition,how to benefit practical fabrications and manufacturing has not been extensively considered yet.In this work,we introduce OptoGPT(Opto Generative Pretrained Transformer),a decoder-only transformer,to solve all these drawbacks and issues simultaneously.
基金supported in part by the National Natural Science Foundation of China under Grant(62001246,62231017,62201277,62071255)the Natural Science Foundation of Jiangsu Province under Grant BK20220390+3 种基金Key R and D Program of Jiangsu Province Key project and topics under Grant(BE2021095,BE2023035)the Natural Science Research Startup Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications(Grant No.NY221011)National Science Foundation of Xiamen,China(No.3502Z202372013)Open Project of the Key Laboratory of Underwater Acoustic Communication and Marine Information Technology(Xiamen University)of the Ministry of Education,China(No.UAC202304)。
文摘In the future development direction of the sixth generation(6G)mobile communication,several communication models are proposed to face the growing challenges of the task.The rapid development of artificial intelligence(AI)foundation models provides significant support for efficient and intelligent communication interactions.In this paper,we propose an innovative semantic communication paradigm called task-oriented semantic communication system with foundation models.First,we segment the image by using task prompts based on the segment anything model(SAM)and contrastive language-image pretraining(CLIP).Meanwhile,we adopt Bezier curve to enhance the mask to improve the segmentation accuracy.Second,we have differentiated semantic compression and transmission approaches for segmented content.Third,we fuse different semantic information based on the conditional diffusion model to generate high-quality images that satisfy the users'specific task requirements.Finally,the experimental results show that the proposed system compresses the semantic information effectively and improves the robustness of semantic communication.
文摘As the inaugural Vietnam International Trade Fair for Apparel,Textiles and Textile Technologies(VIATT)drew curtains on 1 March 2024,Messe Frankfurt's first inte-grated textile fair in Asia has positioned itself as an essential platform for the entire textile value chain.Covering three major industry sectors,the three-day fair attracted 17262 visits from 55 countries and regions,connecting with 409 exhibitors from 17 countries and regions.In addition to atracting top-quality suppliers,participants also noted the high calibre of buyers and the dlear potential for growth at future editions.
文摘A model is proposed to evaluate the,effective modufi of a composite reinforced by two-layered spherical inclusions.This model is based on the localisation problem of a two- layered spherical inclusion embedded in an infinite matrix.The interations of the reinforced phases are taken into account by using the average matrix stress concept.When the external layer vanishes,the proposed model reduces to the classical Mori-Tanaka's model for spherical inclusions.Theoretical results for the composite of polyester matrix filled by hollow glass spheres and voids show excellent agreement with experimental results.
基金Project supported by the National Basic Research Program of China (Grant No. 2011CB403501)the National Natural Science Foundation of China (GrantNos. 41175058,41275062,and 11202106)
文摘A weak nonlinear model of a two-layer barotropic ocean with Rayleigh dissipation is built.The analytic asymptotic solution is derived in the mid-latitude stationary wind field,and the physical meaning of the corresponding problem is discussed.
基金supported by the Fundamental Research for the Central Universities (SWJTU11ZT33)the Funds for the development of Innovation team of Ministry of Education (IRT0955)
文摘Predicting and estimating the response of sub- way tunnel to adjacent excavation of foundation pit is a research focus in the field of underground engineering. Based on the principle of two-stage method and incre- mental method, an analytic approach is suggested in this paper to solve this problem in an accurate and rapid way, and the upheavals of tunnel due to adjacent excavation are solved by analytic method. Besides, the presented method is used in the practical engineering case of Shenzhen Metro Line 11 and verified by numerical simulation and in situ measurement. Finally, a parametric analysis is performed to investigate the influence of different factors on tunnel's deflection. Some useful conclusions have been drawn from the research as below: The deflection results of tunnel obtained from analytic method are nearly consistent with the results getting from numerical analysis and measured data, which verified the accuracy and rationality of pre- sented method. The excavation size has a significant impact on both the displacement values and influenced range of tunnel. However, the relative distance only impacts the displacement values of tunnel, but not the influenced range of tunnel. It may provide certain reference to analyze the deflection of subway tunnel influenced by adjacent excavation.
文摘Many new forms of Boussinesq-type equations have been developed to extend the range of applicability of the classical Boussinesq equations to deeper water in the Study of the surface waves. One approach was used by Nwogu (1993. J. Wtrw. Port Coastal and Oc. Eng. 119, 618-638) to improve the linear dispersion characteristics of the classical Boussinesq equations by using the velocity at an arbitrary level as the velocity variable in derived equations and obtain a new form of Boussinesq-type equations, in which the dispersion property can be optimized by choosing the velocity variable at an adequate level. In this paper, a set of Boussinesq-type equations describing the motions of the interracial waves propagating alone the interface between two homogeneous incompressible and inviscid fluids of different densities with a free surface and a variable water depth were derived using a method similar to that used by Nwogu (1993. J. Wtrw. Port Coastal and Oc. Eng. 119, 618-638) for surface waves. The equations were expressed in terms of the displacements of free surface and density-interface, and the velocity vectors at arbitrary vertical locations in the upper layer and the lower layer (or depth-averaged velocity vector across each layer) of a two-layer fluid. As expected, the equations derived in the present work include as special cases those obtained by Nwogu (1993, J. Wtrw. Port Coastal and Oc. Eng. 119, 618-638) and Peregrine (1967, J. Fluid Mech. 27, 815-827) for surface waves when the density of the upper fluid is taken as zero.
文摘The problem of oblique wave (internal wave) propagation over a small deformation in a channel flow consisting of two layers was considered. The upper fluid was assumed to be bounded above by a rigid lid, which is an approximation for the free surface, and the lower one was bounded below by an impermeable bottom surface having a small deformation; the channel was unbounded in the horizontal directions. Assuming irrotational motion, the perturbation technique was employed to calculate the first-order corrections of the velocity potential in the two fluids by using Green's integral theorem suitably with the introduction of appropriate Green's functions. Those functions help in calculating the reflection and transmission coefficients in terms of integrals involving the shape ftmction c(x) representing the bottom deformation. Three-dimensional linear water wave theory was utilized for formulating the relevant boundary value problem. Two special examples of bottom deformation were considered to validate the results. Consideration of a patch of sinusoidal ripples (having the same wave number) shows that the reflection coefficient is an oscillatory function of the ratio of twice the x-component of the wave number to the ripple wave number. When this ratio approaches one, the theory predicts a resonant interaction between the bed and the interface, and the reflection coefficient becomes a multiple of the number of ripples. High reflection of incident wave energy occurs if this number is large. Similar results were observed for a patch of sinusoidal ripples having different wave numbers. It was also observed that for small angles of incidence, the reflected energy is greater compared to other angles of incidence up to π/ 4. These theoretical observations are supported by graphical results.
文摘The problem of wave scattering by undulating bed topography in a two-layer ocean is investigated on the basis of linear theory. In a two-layer fluid with the upper layer having a free surface, there exist two modes of waves propagating at both the free surface of the upper layer and the interface between the two layers. Due to a wave train of a particular mode incident on an obstacle which is bottom-standing on the lower layer, reflected and transmitted waves of both modes are created by the obstacle. For small undulations on the bottom of the lower layer, a perturbation method is employed to obtain first-order reflection and transmission coefficients of both modes for incident wave trains of again both modes in terms of integrals involving the bed-shape fimction. For sinusoidal undulations, numerical results are presented graphically to illustrate the energy transfer between the waves of different modes by the undulating bed.
文摘Main factors, which should be considered in the classification of dyke foundation, are discussed in this paper. Engineering conditions should be taken into account when the levee safety is appraised based on engineering geologic appraisement and classification. On the basis of safety appraisement, dyke foundation may be classified with regard of suitable reinforcement measures. Examples are presented to illustrate the instructive significance of dyke foundation classification to dyke reinforcement design.
文摘The dynamic response of an infinite beam placed on a Pasternak foundation when the system was subjected to a moving load was investigated.We used the double Fourier transform and its inversion to solve the formulations of the problem.A closed form analytic solution of the beam was obtained by the theorem of residues.We selected a numerical example to illustrate the dynamic response of the beam on Pasternak and Winkler foundations,respectively.We discuss the effect of the moving load velocity on the dynamic displacement response of the beam.The maximum deflection of the beam increases slightly with increased load velocity but increases significantly with reduced shear modulus of subgrade at a given velocity.The maximum deflection of a beam resting on a Pasternak foundation is much smaller than that of a beam on a Winkler foundation.
基金Project 50474064 supported by the National Natural Science Foundation of China
文摘Based on the theory of coordinating action of building ground, foundation and structure, this paper presents a modified method for calculating additional stresses on buildings in mining areas by considering the joint effect of cur- vature deformation and horizontal deformation on buildings. It points out that for buildings over the coal pillar, it is ad- visable to soften the intermediate ground of buildings when they are affected by mining. For buildings over the goaf, it is preferable to soften the ground at both ends of buildings. In order to enhance the ability of a building to resist tensile deformation, the key measure is to reinforce the bottom foundation of the building. In addition, the concept of “angle of break of building” is proposed. It is because of this angle that the protecting coal pillar is left, which is a better solution than prevailing solutions The findings provide a more scientific basis for mining under buildings.
基金National Natural Science Foundation of China(No.50004008)Xuzhou Power Supply Company and the Fundamental Research Funds for the Central Universities(No.2011QNB18) for their financial and technical support for this work
文摘Given the background of a transmission tower erected on a particular mining subsidence area,we used finite element modeling to analyze the anti-deformation performance of transmission towers under a number of different load conditions,including horizontal foundation displacement,uneven vertical downward displacement,wind loads and icing conditions.The results show that the failure in stability of a single steel angle iron represents the limit of the tower given ground deformation.We calculated the corresponding limits of foundation displacements.The results indicate that compression displacement of the foundation is more dangerous than tension displacement.Under complex foundation displacement conditions,horizontal foundation displacement is a key factor leading to failure in the stability of towers.Under conditions of compression or tension displacement of the foundation,wind load becomes the key factor.Towers do not fail when foundation displacements are smaller than 1% (under tension) or 0.5% (under horizontal compression or single foundation subsidence) of the distance between two supports.
基金supported by the National Natural Science Foundation of China (Grant No 60571058)the Specialized Research Fund for the Doctoral Program of Higher Education,China (Grant No 20070701010)
文摘Electromagnetic wave scattering from multilayers consisting of two two-layer Caussian rough surfaces with lossless media is investigated in the Kirchhoff approximation (KA), with consideration of the shadowing effects. The tapered incident wave is introduced into the classic KA, and the bistatic scattering coefficient is redetermined. The advantage of this method is that it is faster in computation than the exact numerical methods. The numerical results show that the bistatic scattering coefficient calculated in the KA is in good agreement with that obtained by using the method of moment (MOM) over a most angular range, which indicates the validity of the KA proposed in our paper. Finally, the effects of the relative permittivity, the root-mean-square (RMS) height, the correlative length, and the average height between the two interfaces on the bistatic scattering coefficient are discussed in detail.
基金Project 50279005 supported by the National Natural Science Foundation of China
文摘To ensure the safety of buildings surrounding foundation pits, a study was made on a settlement monitoring and trend prediction method. A statistical testing method for analyzing the stability of a settlement monitoring datum has been discussed. According to a comprehensive survey, data of 16 stages at operating control point, were verified by a standard t test to determine the stability of the operating control point. A stationary auto-regression model, AR(p), used for the observation point settlement prediction has been investigated. Given the 16 stages of the settlement data at an observation point, the applicability of this model was analyzed. Settlement of last four stages was predicted using the stationary auto-regression model AR (1); the maximum difference between predicted and measured values was 0.6 mm, indicating good prediction results of the model. Hence, this model can be applied to settlement predictions for buildings surrounding foundation pits.
文摘The main objective of this study is to investigate the buckling analysis of CCSs reinforced by CNTs subjected to combined loading of hydrostatic pressure and axial compression resting on the twoparameter elastic foundation(T-P-EF).It is one of the first attempts to derive the governing equations of the CCSs reinforced with CNTs,based on a generalized first-order shear deformation shell theory(FSDST)which includes shell-foundation interaction.By adopting the extended mixing rule,the effective material properties of CCSs reinforced by CNTs with linear distributions are approximated by introducing some efficiency parameters.Three carbon nanotube distribution in the matrix,i.e.uniform distribution(U)and V and X-types linear distribution are taken into account.The stability equations are solved by using the Galerkin procedure to determine the combined buckling loads(CBLs)of the structure selected here.The numerical illustrations cover CBLs characteristics of CCSs reinforced by CNTs in the presence of the T-P-EF.Finally,a parametric study is carried out to study the influences of the foundation parameters,the volume fraction of carbon nanotubes and the types of reinforcement on the CBLs.