Based on the explicit finite element(FE) method and platform of ABAQUS,considering both the inhomogeneity of soils and concave-convex fluctuation of topography,a large-scale refined two-dimensional(2D) FE nonlinear an...Based on the explicit finite element(FE) method and platform of ABAQUS,considering both the inhomogeneity of soils and concave-convex fluctuation of topography,a large-scale refined two-dimensional(2D) FE nonlinear analytical model for Fuzhou Basin was established.The peak ground motion acceleration(PGA) and focusing effect with depth were analyzed.Meanwhile,the results by wave propagation of one-dimensional(1D) layered medium equivalent linearization method were added for contrast.The results show that:1) PGA at different depths are obviously amplified compared to the input ground motion,amplification effect of both funnel-shaped depression and upheaval areas(based on the shape of bedrock surface) present especially remarkable.The 2D results indicate that the PGA displays a non-monotonic decreasing with depth and a greater focusing effect of some particular layers,while the 1D results turn out that the PGA decreases with depth,except that PGA at few particular depth increases abruptly; 2) To the funnel-shaped depression areas,PGA amplification effect above 8 m depth shows relatively larger,to the upheaval areas,PGA amplification effect from 15 m to 25 m depth seems more significant.However,the regularities of the PGA amplification effect could hardly be found in the rest areas; 3) It appears a higher regression rate of PGA amplification coefficient with depth when under a smaller input motion; 4) The frequency spectral characteristic of input motion has noticeable effects on PGA amplification tendency.展开更多
By discretizing the convection terms with AUSM+-up scheme in the rotating coordinate system,a finite volume analysis code based on multi-block structured grids was developed independently so as to realize the numerica...By discretizing the convection terms with AUSM+-up scheme in the rotating coordinate system,a finite volume analysis code based on multi-block structured grids was developed independently so as to realize the numerical solving of internal flow fields of turbomachineries.Taking an unshrouded radial impeller with the working fluid of water vapour as the research object,the flow response to the fluctuation of rotational speed was calculated.By comparing the surface pressure profiles and velocity contours calculated by the code and commercial software respectively,the accuracy of flow solver was verified.The analysis of flow response data indicates that,as the working condition shifts closer towards the surge boundary,the response of flow parameters such as mass flow and aerodynamic torque will be more nonsynchronous with the fluctuation of rotational speed,and also the influence of density variation on mass flow variation will be smaller.Moreover,the transient variation region of working condition performance will deviate farther away from the steady performance curve as the working condition approaches the surge boundary.Compared to the working conditions with small mass flows,the distribution characteristics of pressure difference load on the blade surface vary little under large mass flow conditions.The reduction of fluctuation amplitude of rotational speed exerts no influence on abating the hysteresis of flow response.展开更多
针对湍流边界层内壁面压力脉动功率谱的计算问题,该文结合Grasso修订的TNO-Blake解析模型、RANS(Reynolds average Navier-Stokes)时均流场解,发展一种脉动压力计算方法,近壁面附近采用RANS数值解,对于壁面附近湍流各向异性特性,流向和...针对湍流边界层内壁面压力脉动功率谱的计算问题,该文结合Grasso修订的TNO-Blake解析模型、RANS(Reynolds average Navier-Stokes)时均流场解,发展一种脉动压力计算方法,近壁面附近采用RANS数值解,对于壁面附近湍流各向异性特性,流向和横向异性模型参数采用Stalnov推荐数值,法向异性模型参数采用试验参数,对某平板上一点处的压力脉动功率谱进行了计算,分析了湍流能谱模型、迁移速度等影响,并与Goody模型结果进行对比。研究表明,该文计算方法合理可行,能快速获取壁面压力脉动功率谱,可为工程装备设计的振动噪声分析提供输入。展开更多
基金Project(2011CB013601) supported by the National Basic Research Program of ChinaProject(51378258) supported by the National Natural Science Foundation of China
文摘Based on the explicit finite element(FE) method and platform of ABAQUS,considering both the inhomogeneity of soils and concave-convex fluctuation of topography,a large-scale refined two-dimensional(2D) FE nonlinear analytical model for Fuzhou Basin was established.The peak ground motion acceleration(PGA) and focusing effect with depth were analyzed.Meanwhile,the results by wave propagation of one-dimensional(1D) layered medium equivalent linearization method were added for contrast.The results show that:1) PGA at different depths are obviously amplified compared to the input ground motion,amplification effect of both funnel-shaped depression and upheaval areas(based on the shape of bedrock surface) present especially remarkable.The 2D results indicate that the PGA displays a non-monotonic decreasing with depth and a greater focusing effect of some particular layers,while the 1D results turn out that the PGA decreases with depth,except that PGA at few particular depth increases abruptly; 2) To the funnel-shaped depression areas,PGA amplification effect above 8 m depth shows relatively larger,to the upheaval areas,PGA amplification effect from 15 m to 25 m depth seems more significant.However,the regularities of the PGA amplification effect could hardly be found in the rest areas; 3) It appears a higher regression rate of PGA amplification coefficient with depth when under a smaller input motion; 4) The frequency spectral characteristic of input motion has noticeable effects on PGA amplification tendency.
基金supported by the National Key Basic Research Program of China (No.2012CB026000 )the National Science Foundation for Young Scientists (No.2014011155)
文摘By discretizing the convection terms with AUSM+-up scheme in the rotating coordinate system,a finite volume analysis code based on multi-block structured grids was developed independently so as to realize the numerical solving of internal flow fields of turbomachineries.Taking an unshrouded radial impeller with the working fluid of water vapour as the research object,the flow response to the fluctuation of rotational speed was calculated.By comparing the surface pressure profiles and velocity contours calculated by the code and commercial software respectively,the accuracy of flow solver was verified.The analysis of flow response data indicates that,as the working condition shifts closer towards the surge boundary,the response of flow parameters such as mass flow and aerodynamic torque will be more nonsynchronous with the fluctuation of rotational speed,and also the influence of density variation on mass flow variation will be smaller.Moreover,the transient variation region of working condition performance will deviate farther away from the steady performance curve as the working condition approaches the surge boundary.Compared to the working conditions with small mass flows,the distribution characteristics of pressure difference load on the blade surface vary little under large mass flow conditions.The reduction of fluctuation amplitude of rotational speed exerts no influence on abating the hysteresis of flow response.
文摘针对湍流边界层内壁面压力脉动功率谱的计算问题,该文结合Grasso修订的TNO-Blake解析模型、RANS(Reynolds average Navier-Stokes)时均流场解,发展一种脉动压力计算方法,近壁面附近采用RANS数值解,对于壁面附近湍流各向异性特性,流向和横向异性模型参数采用Stalnov推荐数值,法向异性模型参数采用试验参数,对某平板上一点处的压力脉动功率谱进行了计算,分析了湍流能谱模型、迁移速度等影响,并与Goody模型结果进行对比。研究表明,该文计算方法合理可行,能快速获取壁面压力脉动功率谱,可为工程装备设计的振动噪声分析提供输入。