Orthogonal variable spreading factor channelization codes are widely used to provide variable data rates for supporting different bandwidth requirements in wideband code division multiple access (WCDMA) systems. A new...Orthogonal variable spreading factor channelization codes are widely used to provide variable data rates for supporting different bandwidth requirements in wideband code division multiple access (WCDMA) systems. A new code match scheme for WCDMA code tree management was proposed. The code match scheme is similar to the existing crowed-first scheme. When choosing a code for a user, the code match scheme only compares the one up layer of the allocated codes, unlike the crowed-first scheme which perhaps compares all up layers. So the operation of code match scheme is simple, and the average time delay is decreased by 5.1%. The simulation results also show that the code match strategy can decrease the average code blocking probability by 8.4%.展开更多
To improve the error correction performance, an innovative encoding structure with tail-biting for spinal codes is designed. Furthermore, an adaptive forward stack decoding(A-FSD) algorithm with lower complexity for s...To improve the error correction performance, an innovative encoding structure with tail-biting for spinal codes is designed. Furthermore, an adaptive forward stack decoding(A-FSD) algorithm with lower complexity for spinal codes is proposed. In the A-FSD algorithm, a flexible threshold parameter is set by a variable channel state to narrow the scale of nodes accessed. On this basis, a new decoding method of AFSD with early termination(AFSD-ET) is further proposed. The AFSD-ET decoder not only has the ability of dynamically modifying the number of stored nodes, but also adopts the early termination criterion to curtail complexity. The complexity and related parameters are verified through a series of simulations. The simulation results show that the proposed spinal codes with tail-biting and the AFSD-ET decoding algorithms can reduce the complexity and improve the decoding rate without sacrificing correct decoding performance.展开更多
基金Project(60202005) supported by the National Natural Science Foundation of China
文摘Orthogonal variable spreading factor channelization codes are widely used to provide variable data rates for supporting different bandwidth requirements in wideband code division multiple access (WCDMA) systems. A new code match scheme for WCDMA code tree management was proposed. The code match scheme is similar to the existing crowed-first scheme. When choosing a code for a user, the code match scheme only compares the one up layer of the allocated codes, unlike the crowed-first scheme which perhaps compares all up layers. So the operation of code match scheme is simple, and the average time delay is decreased by 5.1%. The simulation results also show that the code match strategy can decrease the average code blocking probability by 8.4%.
基金supported by the National Natural Science Foundation of China (61701020)the Scientific and Technological Innovation Foundation of Shunde Graduate School,USTB (BK19BF009)。
文摘To improve the error correction performance, an innovative encoding structure with tail-biting for spinal codes is designed. Furthermore, an adaptive forward stack decoding(A-FSD) algorithm with lower complexity for spinal codes is proposed. In the A-FSD algorithm, a flexible threshold parameter is set by a variable channel state to narrow the scale of nodes accessed. On this basis, a new decoding method of AFSD with early termination(AFSD-ET) is further proposed. The AFSD-ET decoder not only has the ability of dynamically modifying the number of stored nodes, but also adopts the early termination criterion to curtail complexity. The complexity and related parameters are verified through a series of simulations. The simulation results show that the proposed spinal codes with tail-biting and the AFSD-ET decoding algorithms can reduce the complexity and improve the decoding rate without sacrificing correct decoding performance.