期刊文献+
共找到347篇文章
< 1 2 18 >
每页显示 20 50 100
基于分段行列2D-PCA的高光谱图像数据降维方法 被引量:11
1
作者 张筱晗 杨桄 +1 位作者 黄俊华 杨永波 《计算机工程》 CAS CSCD 北大核心 2017年第9期256-262,共7页
针对传统二维主成分分析(2D-PCA)方法不能直接应用于高光谱图像数据降维的不足,提出一种基于分段行列2D-PCA的降维方法。利用高光谱图像波段间的相关系数进行波段子空间划分,在各子空间内通过旋转构建新的数据模型,以2D-PCA方法提取其... 针对传统二维主成分分析(2D-PCA)方法不能直接应用于高光谱图像数据降维的不足,提出一种基于分段行列2D-PCA的降维方法。利用高光谱图像波段间的相关系数进行波段子空间划分,在各子空间内通过旋转构建新的数据模型,以2D-PCA方法提取其行、列主成分信息,经过图像重建得到行、列主成分图像,对各波段子空间的行、列主成分图像进行小波分解,按照不同规则融合低频、高频系数,再通过小波逆变换得到降维后的图像。实验结果表明,与PCA和分段PCA方法相比,该方法在保证降维图像质量的前提下可缩短运算时间,提高高光谱图像的降维效率。 展开更多
关键词 高光谱图像 数据降维 二维主成分分析 波段子空间划分 小波融合
在线阅读 下载PDF
基于2D-PCA特征描述的非负权重邻域嵌入人脸超分辨率重建算法 被引量:7
2
作者 曹明明 干宗良 +2 位作者 崔子冠 李然 朱秀昌 《电子与信息学报》 EI CSCD 北大核心 2015年第4期777-783,共7页
在基于邻域嵌入人脸图像的超分辨率重建算法中,训练和重建均在特征空间进行,因此,特征选择对算法性能具有较大影响。另外,算法模型对重建权重未加限定,导致负数权重出现而产生过拟合效应,使得重建人脸图像质量衰退。考虑到人脸图像的特... 在基于邻域嵌入人脸图像的超分辨率重建算法中,训练和重建均在特征空间进行,因此,特征选择对算法性能具有较大影响。另外,算法模型对重建权重未加限定,导致负数权重出现而产生过拟合效应,使得重建人脸图像质量衰退。考虑到人脸图像的特征选择以及权重符号限定的重要作用,该文提出一种基于2维主成分分析(2DPCA)特征描述的非负权重邻域嵌入人脸超分辨率重建算法。首先将人脸图像分成若干子块,利用K均值聚类获得图像子块的局部视觉基元,并利用得到的局部视觉基元对图像子块分类。然后,利用2D-PCA对每一类人脸图像子块提取特征,并建立高、低分辨率样本库。最后,在重建过程中使用新的非负权重求解方法求取权重。仿真实验结果表明,相比其他基于邻域嵌入人脸超分辨率重建方法,所提算法可有效提高权重的稳定性,减少过拟合效应,其重建人脸图像具有较好的主客观质量。 展开更多
关键词 图像处理 人脸超分辨率重建 邻域嵌入 局部视觉基元 2维主成分分析
在线阅读 下载PDF
基于2D-PCA和2D-LDA的人脸识别方法 被引量:7
3
作者 温福喜 刘宏伟 《计算机应用研究》 CSCD 北大核心 2007年第8期201-203,共3页
提出了基于2D-PCA、2D-LDA两种特征采用融合分类器的人脸识别方法。首先提取人脸图像的2D-PCA和2D-LDA特征,对不同特征在决策层对分类器进行融合。在ORL人脸库上的试验结果表明,分类器决策层融合方法在识别性能上优于2D-PCA和2D-LDA,更... 提出了基于2D-PCA、2D-LDA两种特征采用融合分类器的人脸识别方法。首先提取人脸图像的2D-PCA和2D-LDA特征,对不同特征在决策层对分类器进行融合。在ORL人脸库上的试验结果表明,分类器决策层融合方法在识别性能上优于2D-PCA和2D-LDA,更具有鲁棒性。 展开更多
关键词 人脸识别 二维主分量分析 二维线性可分性分析 分类器融合
在线阅读 下载PDF
基于张量的2D-PCA人脸识别算法 被引量:7
4
作者 叶学义 王大安 +2 位作者 宦天枢 夏经文 顾亚风 《计算机工程与应用》 CSCD 北大核心 2017年第6期1-6,共6页
人脸图像的色彩信息也是人脸的重要特征,但现有的2D-PCA彩色人脸识别忽略了人脸色彩信息的空间关系。由此引入三阶张量表示,提出基于张量的2D-PCA(Tensor PCA)的人脸识别算法。Tensor PCA通过分解n模总体散布矩阵获得三个由最大特征值... 人脸图像的色彩信息也是人脸的重要特征,但现有的2D-PCA彩色人脸识别忽略了人脸色彩信息的空间关系。由此引入三阶张量表示,提出基于张量的2D-PCA(Tensor PCA)的人脸识别算法。Tensor PCA通过分解n模总体散布矩阵获得三个由最大特征值对应的特征向量组成的将张量样本投影到低维子空间的投影矩阵,并构造交替最小二乘法的迭代过程对矩阵进行优化得到最优投影矩阵,使得投影后的样本间的距离尽可能得大,以达到最佳分类识别的效果。Georgia Tech彩色人脸库的测试结果表明,与2D-PCA方法相比,识别正确率提升了5.53%,同时训练时间降低了78.1%。 展开更多
关键词 人脸识别 色彩信息 二维主成分分析(2d-pca) 张量
在线阅读 下载PDF
任意三角形结构2DPCA在水下光学图像识别中的应用
5
作者 陈璇 毕鹏飞 胡志远 《电子测量与仪器学报》 CSCD 北大核心 2024年第12期43-53,共11页
在实际应用中,受观测条件和采集场景等诸多因素的综合作用,水下光学图像通常呈现出高维小样本的特性,与此同时,这类图像还极易伴随着各类噪声信息的干扰。导致许多降维方法在其识别过程中的鲁棒表现力不足。为解决上述问题,提出一种创... 在实际应用中,受观测条件和采集场景等诸多因素的综合作用,水下光学图像通常呈现出高维小样本的特性,与此同时,这类图像还极易伴随着各类噪声信息的干扰。导致许多降维方法在其识别过程中的鲁棒表现力不足。为解决上述问题,提出一种创新的任意三角形结构二维主成分分析方法(ATS-2DPCA)应用于水下光视觉图像识别。该方法在构建过程中,充分考虑了投影数据的重构误差和方差两者之间的关系,在此基础上成功匹配到了灵活的鲁棒距离度量机制。通过这种方式,能够切实有效地提升在面临噪声干扰时水下光学图像数据的识别精度,并且实现对于数据几何结构的合理保护。从理论层面证明了该方法的可用性和收敛性。同时,选取了3个水下光学图像数据库进行了实验验证,得出的最优识别精度分别为:89.07%、88.52%、86.00%。一系列实验结果有力地表明,ATS-2DPCA在同类方法中展现出了更为卓越的性能表现。 展开更多
关键词 二维主成分分析 任意三角形结构 鲁棒距离度量 水下光学图像识别 降维
在线阅读 下载PDF
基于磁共振动脉自旋标记成像的2型糖尿病患者大脑灌注特征网络研究 被引量:1
6
作者 班淇琦 瞿航 +2 位作者 王苇 赵义 朱珠 《磁共振成像》 CAS CSCD 北大核心 2024年第8期73-77,102,共6页
目的利用MR动脉自旋标记(arterial spin labeling,ASL)分析2型糖尿病(type 2 diabetes mellitus,T2DM)患者大脑微循环血流灌注及灌注特征模式的改变,并分析这些变化与生化指标间的相关性。材料与方法选取就诊于我院符合T2DM诊断标准的患... 目的利用MR动脉自旋标记(arterial spin labeling,ASL)分析2型糖尿病(type 2 diabetes mellitus,T2DM)患者大脑微循环血流灌注及灌注特征模式的改变,并分析这些变化与生化指标间的相关性。材料与方法选取就诊于我院符合T2DM诊断标准的患者28人,健康对照(healthy control,HC)组26人,进行ASL成像,进行基于体素水平的分析及主成分分析,比较两组间大脑血流量(cerebral blood flow,CBF)及灌注特征网络的改变。结果与HC组比较,糖尿病患者两侧中央旁小叶、左侧补充运动区、两侧扣带回中部、左侧岛盖部额下回、左侧颞中回、左侧颞下回等区域的灌注明显较低(P<0.05,GRF多重比较校正)。与疾病相关的两个灌注网络的方差组分占总方差的比率分别为17.6%和11.7%(位于95%置信区间)具有显著性。第一个灌注网络特征表达值与空腹血糖明显正相关(r=0.32,P=0.001),以第二个灌注特征网络为模板提取的糖尿病组CBF与患者空腹血糖负相关(r=0.12,P=0.03)。结论糖尿病患者部分脑区血流灌注降低,基于主成分的灌注特征能够区分T2DM患者与HC,其灌注模式的改变反映了大脑血流灌注的重塑,为糖尿病微血管病变的早期诊断及干预提供了参考依据。 展开更多
关键词 2型糖尿病 动脉自旋标记 磁共振成像 主成分分析 灌注特征
在线阅读 下载PDF
基于GF-2和ASTER数据青海德龙地区构造蚀变信息提取及找矿预测 被引量:2
7
作者 王艺龙 王然 +3 位作者 严子清 张新铭 李笑龙 徐崇文 《自然资源遥感》 CSCD 北大核心 2024年第1期217-226,共10页
德龙地区位于青海东昆仑金及多金属成矿带东段,是该成矿带内极具勘查潜力区域之一,受限于偏远的地理位置和崎岖的地形条件,大比例尺地球化学勘查及常规地质调查工作难以直接开展。为此,基于ASTER和GF-2数据,通过分析不同空间分辨率遥感... 德龙地区位于青海东昆仑金及多金属成矿带东段,是该成矿带内极具勘查潜力区域之一,受限于偏远的地理位置和崎岖的地形条件,大比例尺地球化学勘查及常规地质调查工作难以直接开展。为此,基于ASTER和GF-2数据,通过分析不同空间分辨率遥感影像的色调、几何结构和纹理特征进行线性和环形构造识别;同时,根据主要蚀变矿物光谱特征分析,利用ASTER可见光—近红外波段和短波红外波段,采用“掩模+主成分分析”方法提取铁化、Al-OH和Mg-OH蚀变信息;在此基础上,结合多元地学信息及野外调查结果,综合分析遥感解译构造蚀变信息与研究区金矿化的内在联系,建立基于区内金矿床的遥感找矿预测模型,并以此为依据划分出找矿远景区3处。通过野外查证,在德龙找矿远景区新发现金矿体多条。研究结果表明,融合遥感数据和地理信息系统技术可有效识别地表热液蚀变和构造空间结构特征,能够为该地区进一步找矿预测提供参考和依据。 展开更多
关键词 GF-2 ASTER 主成分分析 找矿预测 德龙地区
在线阅读 下载PDF
青年女学生胸腰体型分析与服装号型优化
8
作者 申鸿 黄元菁 +2 位作者 杨文静 张亮 孟虎 《服装学报》 北大核心 2025年第3期203-209,共7页
为完善青年女学生胸腰体型划分方法,辅助优化女性群体服装号型设计,选择1825岁女大学生为研究对象,使用三维扫描仪采集189个有效样本数据,并选择与胸腰部位紧密相关的25个变量数据进行研究。对比分析发现:被测量女大学生群体胸腰部位较... 为完善青年女学生胸腰体型划分方法,辅助优化女性群体服装号型设计,选择1825岁女大学生为研究对象,使用三维扫描仪采集189个有效样本数据,并选择与胸腰部位紧密相关的25个变量数据进行研究。对比分析发现:被测量女大学生群体胸腰部位较国家标准中的女子体型偏瘦;通过主成分因子分析得到最能体现胸腰部位特征的8个变量,利用K-means动态聚类将样本中的159组数据进行聚类,划分青年女学生胸腰体型为阔胸偏胖体、平胸偏瘦体、细长偏瘦体3类,并采用组合分类法,将胸腰体型根据胸腰差与胸凸值大小进一步划分为16类。使用剩余的30组数据进行结果验证,发现16类体型的样本总覆盖率为100%。精确的体型分类,可以优化服装号型,提高着装合体性及舒适度,为服装行业挖掘青年女学生消费市场潜力提供了重要参考依据。 展开更多
关键词 体型分类 体型特征 三维人体测量 主成分因子分析 K-means动态聚类
在线阅读 下载PDF
双向压缩的2DPCA与PCA相结合的人脸识别算法 被引量:8
9
作者 李娟 何伟 +1 位作者 张玲 周阳 《计算机应用》 CSCD 北大核心 2009年第B06期245-246,268,共3页
主成分分析(PCA)直接用于人脸识别时,需将图像矩阵转换成向量,导致求解高阶矩阵计算量大。二维主成分分析(2DPCA)的实质是对图像矩阵按行进行图像压缩抽取特征,消除了图像列的相关性,但特征数量仍然较大,影响分类速度。针对这一问题,提... 主成分分析(PCA)直接用于人脸识别时,需将图像矩阵转换成向量,导致求解高阶矩阵计算量大。二维主成分分析(2DPCA)的实质是对图像矩阵按行进行图像压缩抽取特征,消除了图像列的相关性,但特征数量仍然较大,影响分类速度。针对这一问题,提出了采用双向压缩的二维主成分分析消除图像行间和列间的相关性,再结合PCA进一步减少特征数量,改进人脸识别算法,该算法用于ORL人脸库上得到了较高的识别率和较快的识别速度。 展开更多
关键词 主成分分析 二维主成分分析 人脸识别 特征抽取
在线阅读 下载PDF
一种基于加权变形的2DPCA的人脸特征提取方法 被引量:24
10
作者 曾岳 冯大政 《电子与信息学报》 EI CSCD 北大核心 2011年第4期769-774,共6页
该文首先分析了主成分分析法(PCA)和2维主成分分析法(2DPCA)的关系,针对2DPCA丢失具有鉴别能力的协方差信息以及PCA方法不能解决小样本的问题,提出了基于一种加权变形的2DPCA的人脸特征提取方法(WV2DPCA),该方法利用变形的2DPCA方法分... 该文首先分析了主成分分析法(PCA)和2维主成分分析法(2DPCA)的关系,针对2DPCA丢失具有鉴别能力的协方差信息以及PCA方法不能解决小样本的问题,提出了基于一种加权变形的2DPCA的人脸特征提取方法(WV2DPCA),该方法利用变形的2DPCA方法分别对人脸3个子部分分别提取特征,然后根据最近邻理论和权值进行分类。经过在ORL人脸库和YALE人脸库的实验研究表明:与2DPCA相比,提高了人脸空间的识别率,压缩了人脸空间的系数,减少了识别时间;在识别的准确率方面,更优于传统的Fisherfaces,IC,Kernel Eigenfaces的算法。 展开更多
关键词 人脸识别 人脸表示 主成分分析法(PCA) 2维主成分分析法(2DPCA)
在线阅读 下载PDF
基于G2DPCA的SAR目标特征提取与识别 被引量:5
11
作者 胡利平 刘宏伟 +1 位作者 尹奎英 吴顺君 《宇航学报》 EI CAS CSCD 北大核心 2009年第6期2322-2327,共6页
给出了基于广义二维主分量分析(G2DPCA)的合成孔径雷达(SAR)图像目标特征提取方法。与主分量分析(PCA)相比,在寻求最优投影方向时,它直接基于二维图像矩阵而不是一维向量,在特征提取前不必将2维图像矩阵转换成1维向量。与二维主分量分析... 给出了基于广义二维主分量分析(G2DPCA)的合成孔径雷达(SAR)图像目标特征提取方法。与主分量分析(PCA)相比,在寻求最优投影方向时,它直接基于二维图像矩阵而不是一维向量,在特征提取前不必将2维图像矩阵转换成1维向量。与二维主分量分析(2DPCA)相比,它可以同时去除图像行和列像素间的相关性。基于美国运动和静止目标获取与识别(MSTAR)计划录取的数据的实验结果表明,结合预处理,G2DPCA在大大降低了特征维数的同时,又改善了识别性能,并且正确识别率在97%以上,且对目标方位变化具有较好的鲁棒性。 展开更多
关键词 合成孔径雷达 运动和静止目标获取与识别 主分量分析 二维主分量分析
在线阅读 下载PDF
一种基于共同向量结合2DPCA的人脸识别方法 被引量:14
12
作者 文颖 施鹏飞 《自动化学报》 EI CSCD 北大核心 2009年第2期202-205,共4页
提出了一种基于共同向量结合2维主成分分析(2-dimen- sional principal component analysis,2DPCA)的人脸识别方法.共同向量由图像通过Gram-Schmidt正交变换而求得,具有该类图像共同不变的性质.原始图像与该类其同向量之间的差分向量通... 提出了一种基于共同向量结合2维主成分分析(2-dimen- sional principal component analysis,2DPCA)的人脸识别方法.共同向量由图像通过Gram-Schmidt正交变换而求得,具有该类图像共同不变的性质.原始图像与该类其同向量之间的差分向量通过2DPCA处理,依据最小距离测试得到识别结果.实验在ORL和Yale人脸数据库进行测试,结果表明本文提出的方法有较好的识别性能. 展开更多
关键词 人脸识别 共同向量 2维主成分分析
在线阅读 下载PDF
一种改进的模块2DPCA人脸识别新方法 被引量:11
13
作者 李晓东 费树岷 《系统仿真学报》 CAS CSCD 北大核心 2009年第15期4672-4675,共4页
提出了一种改进的模块2DPCA方法,即基于类内平均脸的分块2DPCA算法。该算法对每一类训练样本中每个训练样本的每一子块求类内平均脸,并用类内平均脸对训练样本类内的相应子块进行规范化处理,然后由所有规范化后的子块构成总体散布矩阵,... 提出了一种改进的模块2DPCA方法,即基于类内平均脸的分块2DPCA算法。该算法对每一类训练样本中每个训练样本的每一子块求类内平均脸,并用类内平均脸对训练样本类内的相应子块进行规范化处理,然后由所有规范化后的子块构成总体散布矩阵,从而得到最优投影矩阵;由训练集的全体子块的平均值对训练样本的子块和测试样本的子块进行规范化后投影到最优投影矩阵,得到识别特征;最后用最近距离分类器分类。在ORL人脸库上的实验结果表明,提出的方法在识别性能上明显优于2DPCA方法和普通模块2DPCA方法。 展开更多
关键词 二维主成分分析 类内平均脸 模块化二维主成分分析 特征矩阵 人脸识别
在线阅读 下载PDF
一种基于Gabor小波和2DPCA的掌纹识别改进算法 被引量:10
14
作者 苏滨 姜威 《计算机应用与软件》 CSCD 2011年第1期242-245,共4页
提出一种改进的基于Gabor小波变换和二维主分量分析2DPCA(2-Dimensional Principal component analysis)的掌纹识别。2DPCA克服了传统Gabor小波变换后直接进行主分量分析PCA(Principal component analysis)遇到的维数灾难问题,并且将PCA... 提出一种改进的基于Gabor小波变换和二维主分量分析2DPCA(2-Dimensional Principal component analysis)的掌纹识别。2DPCA克服了传统Gabor小波变换后直接进行主分量分析PCA(Principal component analysis)遇到的维数灾难问题,并且将PCA与Fisher线性判别FLD(Fisher Linear Discriminate)结合起来,利用了以前仅用于降维的PCA特征和FLD特征相融合进行掌纹识别。基于PolyU掌纹库的实验结果表明,该方法不仅有更高的识别率,而且维数更低。 展开更多
关键词 掌纹识别 GABOR小波变换 二维主分量分析 主分量分析 FISHER线性判别
在线阅读 下载PDF
基于2DPCA的有效非局部滤波方法 被引量:12
15
作者 郑钰辉 孙权森 夏德深 《自动化学报》 EI CSCD 北大核心 2010年第10期1379-1389,共11页
最近,非局部滤波方法已成为滤波领域的研究热点.本文深入研究了基于预选择的非局部滤波方法,指出了已有方法在提取图像片特征方面存在的不足,利用二维主成分分析(Two-dimensional principal component analysis,2DPCA)提出了一种有效的... 最近,非局部滤波方法已成为滤波领域的研究热点.本文深入研究了基于预选择的非局部滤波方法,指出了已有方法在提取图像片特征方面存在的不足,利用二维主成分分析(Two-dimensional principal component analysis,2DPCA)提出了一种有效的非局部滤波方法.该方法对基于预选择的非局部滤波方法的主要贡献有:1)用于提取图像片特征的面向图像片的2DPCA;2)基于相似距离直方图的相似集自动选取方法;3)相似距离权重参数局部自适应选取方法.实验结果表明,本文方法对弱梯度、人脸、纹理以及分段光滑图像均能取得较好的滤波效果. 展开更多
关键词 非局部滤波 二维主成分分析 非局部正则化 图像片
在线阅读 下载PDF
基于统计形状模型的肱骨形态学描述研究
16
作者 高伟录 贾争锋 +3 位作者 杨长森 李建涛 苏秀云 张里程 《首都医科大学学报》 北大核心 2025年第5期765-769,共5页
目的构建高精度的肱骨统计形状模型,并系统性地描述其解剖变异规律。方法利用收集的60例肱骨的三维模型数据构建肱骨统计形状模型,采用主成分分析方法,揭示了肱骨解剖变异的主要模式及其贡献率。结果研究显示,前五个主成分(PC01~PC05)... 目的构建高精度的肱骨统计形状模型,并系统性地描述其解剖变异规律。方法利用收集的60例肱骨的三维模型数据构建肱骨统计形状模型,采用主成分分析方法,揭示了肱骨解剖变异的主要模式及其贡献率。结果研究显示,前五个主成分(PC01~PC05)共同解释了96.6%的总体解剖变异,其中PC01和PC02为主要成分,分别贡献了66.6%和23.5%的变异。PC01主要反映了肱骨整体尺寸(长度/宽度)的缩放效应,而PC02揭示了独立于整体缩放的长度变异特征,可能反映了个体化差异。后续主成分(PC03~PC05)则刻画了肱骨近端和远端的局部形态特征及其精细变化。结论本研究构建的统计形状模型,为个性化假体设计、手术规划及生物力学仿真提供了可靠的数字化基础。 展开更多
关键词 肱骨 三维重建 解剖变异 形态学变化 统计形状模型 主成分分析
在线阅读 下载PDF
基于方向极傅里叶频谱2DPCA的尾迹检测 被引量:4
17
作者 汪海洋 潘德炉 +2 位作者 夏德深 毛志华 程乾 《自动化学报》 EI CSCD 北大核心 2008年第9期1053-1059,共7页
针对航空图像中的水面尾迹,提出了一种基于方向极傅里叶频谱二维主成分分析(Two-dimensional principal component analysis,2DPCA)的尾迹自动检测算法.该方法根据子图像的纹理方向,对傅里叶频谱进行极坐标变换,使得到的方向极傅里叶频... 针对航空图像中的水面尾迹,提出了一种基于方向极傅里叶频谱二维主成分分析(Two-dimensional principal component analysis,2DPCA)的尾迹自动检测算法.该方法根据子图像的纹理方向,对傅里叶频谱进行极坐标变换,使得到的方向极傅里叶频谱具有平移和旋转不变性.相对于文献中对极频谱的直接划分作为纹理特征,本文对它进行一次列二维主成分分析,一次行二维主成分分析和两次二维主成分分析,实验结果表明本文方法具有更高的分类识别率,其中两次二维主成分分析的分类识别率最高.对40幅图像的测试结果表明,本文的方法能够有效地自动检测航空图像中的水面尾迹纹理。 展开更多
关键词 二维主成分分析 傅里叶频谱 方向极傅里叶频谱
在线阅读 下载PDF
基于2DPCA和EBFNN的指纹识别方法 被引量:5
18
作者 罗菁 林树忠 +1 位作者 詹湘琳 倪建云 《光学精密工程》 EI CAS CSCD 北大核心 2008年第9期1773-1780,共8页
结合小波变换(WT)、二维主元分析(2DPCA)和椭球基函数(EBF)特点,提出了一种基于WT、2DPCA和EBF神经网络指纹识别方法。利用小波变换将原始图像分解为高频分量和低频分量,并忽略水平高频与垂直高频分量,获得原始图像的基本特征。再通过2D... 结合小波变换(WT)、二维主元分析(2DPCA)和椭球基函数(EBF)特点,提出了一种基于WT、2DPCA和EBF神经网络指纹识别方法。利用小波变换将原始图像分解为高频分量和低频分量,并忽略水平高频与垂直高频分量,获得原始图像的基本特征。再通过2DPCA算法对该图像进行降维,获取降维特征;最后结合椭球基函数神经网络(EBFNN)完成指纹识别。本算法将2DPCA优化的特征提取与EBFNN的自适应性相结合,在FVC2000(国际指纹竞赛数据库)上做了测试,总的正确识别率可达91.4%,具有一定的实用价值。与WT-PNN算法和WT-2DPCA-RBF算法进行比较,结果表明,本文提出的算法在平移、旋转及光照变化的指纹数据库上的识别效果优于WT-PNN算法和WT-2DPCA-RBF算法。 展开更多
关键词 指纹识别 二维主元分析 椭球基函数 小波变换
在线阅读 下载PDF
基于对角DCT与2DPCA算法的人脸识别 被引量:7
19
作者 甘俊英 高建虎 李春芝 《计算机工程与应用》 CSCD 北大核心 2007年第31期210-213,共4页
提出了一种对角离散余弦变换(Discrete Cosine Transform,DCT)和二维主元分析(Two-Dimensional Principal Component Analysis,2DPCA)相结合的人脸识别方法。该算法首先将人脸图像转换成对角图像,同时利用DCT压缩并重建人脸图像;然后通... 提出了一种对角离散余弦变换(Discrete Cosine Transform,DCT)和二维主元分析(Two-Dimensional Principal Component Analysis,2DPCA)相结合的人脸识别方法。该算法首先将人脸图像转换成对角图像,同时利用DCT压缩并重建人脸图像;然后通过2DPCA进行特征提取得到人脸识别特征;最后运用最近邻分类器进行识别。基于ORL(Olivetti Research Laboratory)、受污损ORL及Yale人脸数据库的实验结果证明了该算法的有效性。 展开更多
关键词 离散余弦变换 二维主元分析 图像重建 人脸识别
在线阅读 下载PDF
融合2DDCT、2DPCA和2DLDA的人脸识别方法 被引量:5
20
作者 廖正湘 陈元枝 李强 《计算机应用与软件》 CSCD 北大核心 2012年第9期237-239,288,共4页
二维主分量分析(2DPCA)是人脸识别中的一种非常有效的特征提取方法。二维线性判别(2DLDA)方法具有很好的分类效果。在研究这两种理论的基础上提出一种基于2DDCT(二维离散余弦变换)与2DPCA+2DLDA相结合的人脸识别方法,并在0RL人脸库上分... 二维主分量分析(2DPCA)是人脸识别中的一种非常有效的特征提取方法。二维线性判别(2DLDA)方法具有很好的分类效果。在研究这两种理论的基础上提出一种基于2DDCT(二维离散余弦变换)与2DPCA+2DLDA相结合的人脸识别方法,并在0RL人脸库上分别对单一的方法与相融合的方法进行识别比较研究。实验结果表明,提出的方法不仅提高了识别率,而且减少了训练与分类时间。 展开更多
关键词 二维主分量分析 二维线性判别分析 特征提取 离散余弦变换
在线阅读 下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部