提出了一种基于共同向量结合2维主成分分析(2-dimen- sional principal component analysis,2DPCA)的人脸识别方法.共同向量由图像通过Gram-Schmidt正交变换而求得,具有该类图像共同不变的性质.原始图像与该类其同向量之间的差分向量通...提出了一种基于共同向量结合2维主成分分析(2-dimen- sional principal component analysis,2DPCA)的人脸识别方法.共同向量由图像通过Gram-Schmidt正交变换而求得,具有该类图像共同不变的性质.原始图像与该类其同向量之间的差分向量通过2DPCA处理,依据最小距离测试得到识别结果.实验在ORL和Yale人脸数据库进行测试,结果表明本文提出的方法有较好的识别性能.展开更多
提出一种改进的基于Gabor小波变换和二维主分量分析2DPCA(2-Dimensional Principal component analysis)的掌纹识别。2DPCA克服了传统Gabor小波变换后直接进行主分量分析PCA(Principal component analysis)遇到的维数灾难问题,并且将PCA...提出一种改进的基于Gabor小波变换和二维主分量分析2DPCA(2-Dimensional Principal component analysis)的掌纹识别。2DPCA克服了传统Gabor小波变换后直接进行主分量分析PCA(Principal component analysis)遇到的维数灾难问题,并且将PCA与Fisher线性判别FLD(Fisher Linear Discriminate)结合起来,利用了以前仅用于降维的PCA特征和FLD特征相融合进行掌纹识别。基于PolyU掌纹库的实验结果表明,该方法不仅有更高的识别率,而且维数更低。展开更多
最近,非局部滤波方法已成为滤波领域的研究热点.本文深入研究了基于预选择的非局部滤波方法,指出了已有方法在提取图像片特征方面存在的不足,利用二维主成分分析(Two-dimensional principal component analysis,2DPCA)提出了一种有效的...最近,非局部滤波方法已成为滤波领域的研究热点.本文深入研究了基于预选择的非局部滤波方法,指出了已有方法在提取图像片特征方面存在的不足,利用二维主成分分析(Two-dimensional principal component analysis,2DPCA)提出了一种有效的非局部滤波方法.该方法对基于预选择的非局部滤波方法的主要贡献有:1)用于提取图像片特征的面向图像片的2DPCA;2)基于相似距离直方图的相似集自动选取方法;3)相似距离权重参数局部自适应选取方法.实验结果表明,本文方法对弱梯度、人脸、纹理以及分段光滑图像均能取得较好的滤波效果.展开更多
针对航空图像中的水面尾迹,提出了一种基于方向极傅里叶频谱二维主成分分析(Two-dimensional principal component analysis,2DPCA)的尾迹自动检测算法.该方法根据子图像的纹理方向,对傅里叶频谱进行极坐标变换,使得到的方向极傅里叶频...针对航空图像中的水面尾迹,提出了一种基于方向极傅里叶频谱二维主成分分析(Two-dimensional principal component analysis,2DPCA)的尾迹自动检测算法.该方法根据子图像的纹理方向,对傅里叶频谱进行极坐标变换,使得到的方向极傅里叶频谱具有平移和旋转不变性.相对于文献中对极频谱的直接划分作为纹理特征,本文对它进行一次列二维主成分分析,一次行二维主成分分析和两次二维主成分分析,实验结果表明本文方法具有更高的分类识别率,其中两次二维主成分分析的分类识别率最高.对40幅图像的测试结果表明,本文的方法能够有效地自动检测航空图像中的水面尾迹纹理。展开更多
提出了一种对角离散余弦变换(Discrete Cosine Transform,DCT)和二维主元分析(Two-Dimensional Principal Component Analysis,2DPCA)相结合的人脸识别方法。该算法首先将人脸图像转换成对角图像,同时利用DCT压缩并重建人脸图像;然后通...提出了一种对角离散余弦变换(Discrete Cosine Transform,DCT)和二维主元分析(Two-Dimensional Principal Component Analysis,2DPCA)相结合的人脸识别方法。该算法首先将人脸图像转换成对角图像,同时利用DCT压缩并重建人脸图像;然后通过2DPCA进行特征提取得到人脸识别特征;最后运用最近邻分类器进行识别。基于ORL(Olivetti Research Laboratory)、受污损ORL及Yale人脸数据库的实验结果证明了该算法的有效性。展开更多
文摘提出了一种基于共同向量结合2维主成分分析(2-dimen- sional principal component analysis,2DPCA)的人脸识别方法.共同向量由图像通过Gram-Schmidt正交变换而求得,具有该类图像共同不变的性质.原始图像与该类其同向量之间的差分向量通过2DPCA处理,依据最小距离测试得到识别结果.实验在ORL和Yale人脸数据库进行测试,结果表明本文提出的方法有较好的识别性能.
文摘提出一种改进的基于Gabor小波变换和二维主分量分析2DPCA(2-Dimensional Principal component analysis)的掌纹识别。2DPCA克服了传统Gabor小波变换后直接进行主分量分析PCA(Principal component analysis)遇到的维数灾难问题,并且将PCA与Fisher线性判别FLD(Fisher Linear Discriminate)结合起来,利用了以前仅用于降维的PCA特征和FLD特征相融合进行掌纹识别。基于PolyU掌纹库的实验结果表明,该方法不仅有更高的识别率,而且维数更低。
文摘最近,非局部滤波方法已成为滤波领域的研究热点.本文深入研究了基于预选择的非局部滤波方法,指出了已有方法在提取图像片特征方面存在的不足,利用二维主成分分析(Two-dimensional principal component analysis,2DPCA)提出了一种有效的非局部滤波方法.该方法对基于预选择的非局部滤波方法的主要贡献有:1)用于提取图像片特征的面向图像片的2DPCA;2)基于相似距离直方图的相似集自动选取方法;3)相似距离权重参数局部自适应选取方法.实验结果表明,本文方法对弱梯度、人脸、纹理以及分段光滑图像均能取得较好的滤波效果.
文摘针对航空图像中的水面尾迹,提出了一种基于方向极傅里叶频谱二维主成分分析(Two-dimensional principal component analysis,2DPCA)的尾迹自动检测算法.该方法根据子图像的纹理方向,对傅里叶频谱进行极坐标变换,使得到的方向极傅里叶频谱具有平移和旋转不变性.相对于文献中对极频谱的直接划分作为纹理特征,本文对它进行一次列二维主成分分析,一次行二维主成分分析和两次二维主成分分析,实验结果表明本文方法具有更高的分类识别率,其中两次二维主成分分析的分类识别率最高.对40幅图像的测试结果表明,本文的方法能够有效地自动检测航空图像中的水面尾迹纹理。
基金广东省自然科学基金(the Natural Science Foundation of Guangdong Province of China under Grant No.032356)北京大学视觉与听觉信息处理国家重点实验室开放课题基金项目(No.0505)
文摘提出了一种对角离散余弦变换(Discrete Cosine Transform,DCT)和二维主元分析(Two-Dimensional Principal Component Analysis,2DPCA)相结合的人脸识别方法。该算法首先将人脸图像转换成对角图像,同时利用DCT压缩并重建人脸图像;然后通过2DPCA进行特征提取得到人脸识别特征;最后运用最近邻分类器进行识别。基于ORL(Olivetti Research Laboratory)、受污损ORL及Yale人脸数据库的实验结果证明了该算法的有效性。