Retrograde condensation frequently occurs during the development of gas condensate reservoirs. The loss of productivity is often observed due to the reduced relative permeability to gas as condensate accumulates ne...Retrograde condensation frequently occurs during the development of gas condensate reservoirs. The loss of productivity is often observed due to the reduced relative permeability to gas as condensate accumulates near the well bore region. How to describe the condensate blockage effect exactly has been a continuous research topic. However, up to now, the present methods usually over-estimate or underestimate the productivity reduction due to an incorrect understanding of the mechanism of flow in porous medium, which inevitably results in an inaccurate prediction of production performance. It has been found in recent numerous theoretical and experimental studies that capillary number and non-Darcy flow have significant influence on relative permeability in regions near the well bore. The two effects impose opposite impacts on production performance, thus leading to gas condensate flow showing characteristics different from general understanding. It is significant for prediction of performance in gas condensate wells to understand the two effects exactly. The aim of the paper is to describe and analyze the flow dynamics in porous media accurately during the production of gas condensate reservoirs. Based on the description of three-zone flow mechanism, capillary number and non-Darcy effect are incorporated in the analysis of relative permeability, making it possible to describe the effect of condensate blockage. The effect of capillary number and inertial flow on gas and condensate relative permeability is analyzed in detail. Novel Inflow Performance Relation (IPR) models considering high velocity effects are formulated and the contrast analysis of different IPR models is conducted. The result shows that the proposed method can help predict the production performance and productivity more accurately than conventional methods.展开更多
The measurement of void fraction is of importance to the oil industry and chemical industry. In this article, the principle and mathematical method of determining the void fraction of horizontal gas-liquid flow by usi...The measurement of void fraction is of importance to the oil industry and chemical industry. In this article, the principle and mathematical method of determining the void fraction of horizontal gas-liquid flow by using a sin- gle-energy γ-ray system is described. The γ-ray source is the radioactive isotope of 241Am with γ-ray energy of 59.5 keV. The time-averaged value of the void fraction in a 50.0-mm i.d. transparent horizontal pipeline is measured under various combinations of the liquid flow and gas flow. It is found that increasing the gas flow rate at a fixed liquid flow rate would increase the void fraction. Test data are compared with the predictions of the correlations and a good agreement is found. The result shows that the designed γ-ray system can be used for measuring the void fraction in a horizontal gas-liquid two-phase flow with high accuracy.展开更多
Chokes are one of the most important components of downhole flow-control equipment. The particle erosion mathematical model, which considers particle-particle interaction, was established and used to simulate solid pa...Chokes are one of the most important components of downhole flow-control equipment. The particle erosion mathematical model, which considers particle-particle interaction, was established and used to simulate solid particle movement as well as particle erosion characteristics of the solid-liquid two-phase flow in a choke. The corresponding erosion reduction approach by setting ribs on the inner wall of the choke was advanced. This mathematical model includes three parts: the flow field simulation of the continuous carrier fluid by an Eulerian approach, the particle interaction simulation using the discrete particle hard sphere model by a Lagrangian approach and calculation of erosion rate using semiempirical correlations. The results show that particles accumulated in a narrow region from inlet to outlet of the choke and the dominating factor affecting particle motion is the fluid drag force. As a result, the optimization of rib geometrical parameters indicates that good anti-erosion performance can be achieved by four ribs, each of them with a height (H) of 3 mm and a width (B) of 5 mm equaling the interval between ribs (L).展开更多
Applying the standard Galerkin finite element method for solving flow problems in porous media encounters some difficulties such as numerical oscillation at the shock front and discontinuity of the velocity field on e...Applying the standard Galerkin finite element method for solving flow problems in porous media encounters some difficulties such as numerical oscillation at the shock front and discontinuity of the velocity field on element faces.Discontinuity of velocity field leads this method not to conserve mass locally.Moreover,the accuracy and stability of a solution is highly affected by a non-conservative method.In this paper,a three dimensional control volume finite element method is developed for twophase fluid flow simulation which overcomes the deficiency of the standard finite element method,and attains high-orders of accuracy at a reasonable computational cost.Moreover,this method is capable of handling heterogeneity in a very rational way.A fully implicit scheme is applied to temporal discretization of the governing equations to achieve an unconditionally stable solution.The accuracy and efficiency of the method are verified by simulating some waterflooding experiments.Some representative examples are presented to illustrate the capability of the method to simulate two-phase fluid flow in heterogeneous porous media.展开更多
The drift-flux model has a practical importance in two-phase flow analysis.In this study,a finite volume solution is developed for a transient four-equation drift-flux model through the staggered mesh,leading to the d...The drift-flux model has a practical importance in two-phase flow analysis.In this study,a finite volume solution is developed for a transient four-equation drift-flux model through the staggered mesh,leading to the development of a fully implicit discretization method.The main advantage of the fully implicit method is its unconditional stability.Newton's scheme is a popular method of choice for the solution of a nonlinear system of equations arising from fully implicit discretization of field equations.However,the lack of convergence robustness and the construction of Jacobian matrix have created several difficulties for the researchers.In this paper,a fully implicit model is developed based on the SIMPLE algorithm for two-phase flow simulations.The drawbacks of Newton's method are avoided in the developed model.Different limiter functions are considered,and the stabilized method is developed under steady and transient conditions.The results obtained by the numerical modeling are in good agreement with the experimental data.As expected,the results prove that the developed model is not restricted by any stability limit.展开更多
Electromagnetic Computer Tomography (ECT) is a method to probe the interior of an inhomogeneous medium via surface measurement in a non-linear way. Due to the great differences in conductivity and permittivity betwe...Electromagnetic Computer Tomography (ECT) is a method to probe the interior of an inhomogeneous medium via surface measurement in a non-linear way. Due to the great differences in conductivity and permittivity between oil and water in the well, Electromagnetic Tomography Well Logging (ETWL), a new flow imaging measurement system, is proposed to describe the distribution and movement of oil/water two-phase flow in the well by scanning the detected region and applying a suitable data processing algorithm. The results of the numerical simulation and physical modeling show that the system could provide a clear image of the flow profile.展开更多
Complex networks have established themselves in recent years as being particularly suitable and flexible for representing and modelling many complex natural and artificial systems. Oil-water two-phase flow is one of t...Complex networks have established themselves in recent years as being particularly suitable and flexible for representing and modelling many complex natural and artificial systems. Oil-water two-phase flow is one of the most complex systems. In this paper, we use complex networks to study the inclined oil water two-phase flow. Two different complex network construction methods are proposed to build two types of networks, i.e. the flow pattern complex network (FPCN) and fluid dynamic complex network (FDCN). Through detecting the community structure of FPCN by the community-detection algorithm based on K-means clustering, useful and interesting results are found which can be used for identifying three inclined oil-water flow patterns. To investigate the dynamic characteristics of the inclined oil-water two-phase flow, we construct 48 FDCNs under different flow conditions, and find that the power-law exponent and the network information entropy, which are sensitive to the flow pattern transition, can both characterize the nonlinear dynamics of the inclined oil-water two-phase flow. In this paper, from a new perspective, we not only introduce a complex network theory into the study of the oil-water two-phase flow but also indicate that the complex network may be a powerful tool for exploring nonlinear time series in practice.展开更多
The two-phase flow models are commonly used in industrial applications, such as nuclear, power, chemical-process, oil-and-gas, cryogenics, bio-medical, micro-technology and so on. This is a survey paper on the study o...The two-phase flow models are commonly used in industrial applications, such as nuclear, power, chemical-process, oil-and-gas, cryogenics, bio-medical, micro-technology and so on. This is a survey paper on the study of compressible nonconservative two-fluid model, drift-flux model and viscous liquid-gas two-phase flow model. We give the research developments of these three two-phase flow models, respectively. In the last part, we give some open problems about the above models.展开更多
We study the mathematical model of two phase compressible flows through porous media. Under the condition that the compressibility of rock, oil, and water is small, we prove that the initial-boundary value problem of ...We study the mathematical model of two phase compressible flows through porous media. Under the condition that the compressibility of rock, oil, and water is small, we prove that the initial-boundary value problem of the nonlinear system of equations admits a weak solution.展开更多
Tow-phase flow mixed variational formulations of evolution filtration problems with seawater intrusion are analyzed. A dual mixed fractional flow velocity-pressure model is considered with an air-fresh water and a fre...Tow-phase flow mixed variational formulations of evolution filtration problems with seawater intrusion are analyzed. A dual mixed fractional flow velocity-pressure model is considered with an air-fresh water and a fresh water-seawater characterization. For analysis and computational purposes, spatial decompositions based on nonoverlapping multidomains, above and below the sea level, are variationally introduced with internal boundary fluxes dualized as weak transmission constraints. Further, parallel augmented and exactly penalized duality algorithms, and proximation semi-implicit time marching schemes, are established and analyzed.展开更多
We generate a directed weighted complex network by a method based on Markov transition probability to represent an experimental two-phase flow. We first systematically carry out gas-liquid two-phase flow experiments f...We generate a directed weighted complex network by a method based on Markov transition probability to represent an experimental two-phase flow. We first systematically carry out gas-liquid two-phase flow experiments for measuring the time series of flow signals. Then we construct directed weighted complex networks from various time series in terms of a network generation method based on Markov transition probability. We find that the generated network inherits the main features of the time series in the network structure. In particular, the networks from time series with different dynamics exhibit distinct topological properties. Finally, we construct two-phase flow directed weighted networks from experimental signals and associate the dynamic behavior of gas-liquid two-phase flow with the topological statistics of the generated networks. The results suggest that the topological statistics of two-phase flow networks allow quantitative characterization of the dynamic flow behavior in the transitions among different gas-liquid flow patterns.展开更多
The China Advanced Research Reactor (CARR) is scheduled to be operated in the autumn of 2008.In this paper,we report preparations for installing the neutron radiography instrument (NRI) and for utilizing it efficientl...The China Advanced Research Reactor (CARR) is scheduled to be operated in the autumn of 2008.In this paper,we report preparations for installing the neutron radiography instrument (NRI) and for utilizing it efficiently. The 2-D relative neutron intensity profiles for the water-vapor two-phase flow inside the robe were obtained using the MCNP code without influence of y-ray and electronic-noise.The MCNP simulation of the 2-D neutron intensity profile for the water-vapor two-phase flow was demonstrated.The simulated 2-D neutron intensity profiles could be used as the benchmark data base by calibrating part of the data measured by the CARR-NRI.The 3-D objective images allow us to understand the flow pattern more clearly and it is reconstructed using the MATLAB through the threshold transformation techniques.And thus it is concluded that the MCNP code and the MATLAB are very useful for constructing the benchmark data base for the investigation of the water-vapor two-phase flow using the CARR-NRI.展开更多
Linearized equations of fluid dynamics of cell two phase flow for one dimensional case are proposed. Based on the equations, an analytic solution is derived, in which the frequency of wave is observed. The frequency f...Linearized equations of fluid dynamics of cell two phase flow for one dimensional case are proposed. Based on the equations, an analytic solution is derived, in which the frequency of wave is observed. The frequency formula consists of all important parameters of the fluid dynamics. In our observation, the group velocity and phase velocity of the motion of wave propagation are explicitly exhibited as well.展开更多
The two-phase flow instabilities observed in through parallel multichannel can be classified into three types,of which only one is intrinsic to parallel multichannel systems.The intrinsic instabilities observed in par...The two-phase flow instabilities observed in through parallel multichannel can be classified into three types,of which only one is intrinsic to parallel multichannel systems.The intrinsic instabilities observed in parallel multichannel system have been studied experimentally.The stable boundary of the flow in such a parallel-channel system are sought,and the nature of inlet flow oscillation in the unstable region has been examined experimentally under various conditions of inlet velocity,heat flux,liquid temperature,cross section of channel and entrance throttling.The results show that parallel multichannel system possess a characteristic oscillation that is quite independent of the magnitude and duration of the initial disturbance,and the stable boundary is influenced by the characteristic frequency of the system as well as by the exit quality when this is low,and upon raising the exit quality and reducing the characteristic frequency,the system increases its instability,and entrance throttling effectively contributes to stabilization of the system.展开更多
Experimental and numerical simulation were carried out on vertically upward air-water two-phase flow in the rod bundle with grid spacer. The related numerical simulation has been performed by using the Computational F...Experimental and numerical simulation were carried out on vertically upward air-water two-phase flow in the rod bundle with grid spacer. The related numerical simulation has been performed by using the Computational Fluid Dynamics code-CFX4.2, in which lateral interfacial effects based on a two-fluid model are accounted for. This model has been used to evaluate the velocity fields of gas and liquid phases, as well as phase distribution between elements in rod bundle by simulating 1/4 zone of experimental model, and mixing vanes of spacer in this area. Fur- thermore, this model has been used to predict the effects of spacer on flow and pressure drop along the rod bundle. The calculation results show that the mixing vane has significant influence on axial and lateral velocity. In order to obtain some experimental data to verify the numerical solutions, a series of tests, using a specially designed 3×3 rod bundle test section with AFA-2G structure spacer have been performed. An optical probe was used to measure local void fractions. At the same time, the pressure loss has been measured. A comparison between the calculated void pro- file and pressure loss and the measured results shows that the predicted void profiles are consistent at low gas appar- ent velocity. This research shows that the code CFX4.2 can be used to describe the 3-D air-water two-phase flow in the rod bundle channel with grid spacer.展开更多
Motivated by inconveniences of present hybrid methods,a gradient-augmented hybrid interface capturing method(GAHM) is presented for incompressible two-phase flow.A front tracking method(FTM) is used as the skeleto...Motivated by inconveniences of present hybrid methods,a gradient-augmented hybrid interface capturing method(GAHM) is presented for incompressible two-phase flow.A front tracking method(FTM) is used as the skeleton of the GAHM for low mass loss and resources.Smooth eulerian level set values are calculated from the FTM interface,and are used for a local interface reconstruction.The reconstruction avoids marker particle redistribution and enables an automatic treatment of interfacial topology change.The cubic Hermit interpolation is employed in all steps of the GAHM to capture subgrid structures within a single spacial cell.The performance of the GAHM is carefully evaluated in a benchmark test.Results show significant improvements of mass loss,clear subgrid structures,highly accurate derivatives(normals and curvatures) and low cost.The GAHM is further coupled with an incompressible multiphase flow solver,Super CE/SE,for more complex and practical applications.The updated solver is evaluated through comparison with an early droplet research.展开更多
Sediment deposition in the pumping station has a huge negative impact on unit operation.The three-dimensional CFD method has been used to simulate inlet structure flow in pumping station based on the Eulerian solid- l...Sediment deposition in the pumping station has a huge negative impact on unit operation.The three-dimensional CFD method has been used to simulate inlet structure flow in pumping station based on the Eulerian solid- liquid two-phase flow model. The numerical results of the preliminary scheme show that sediment deposition occurs in the forebay of pumping station because of poor flow pattern therein. In order to improve hydraulic configuration in the forebay,one modified measure reconstructs water diversion weir shape,and another measure sets a water retaining sill in the approach channel. The simulation results of the modified scheme prove that back flow in the forebay has been eliminated and the sediment deposition region has also been reduced.展开更多
We propose a hybrid scheme for computations of incompressible two-phase flows. The incompressible constraint has been replaced by a pressure Poisson-like equation and then the pressure is updated by the modified marke...We propose a hybrid scheme for computations of incompressible two-phase flows. The incompressible constraint has been replaced by a pressure Poisson-like equation and then the pressure is updated by the modified marker and cell method. Meanwhile, the moment equations in the incompressible Navier-Stokes equations are solved by our semidiscrete Hermite central-upwind scheme, and the interface between the two fluids is considered to be continuous and is described implicitly as the 0.5 level set of a smooth function being a smeared out Heaviside function. It is here named the hybrid scheme. Some numerical experiments are successfully carried out, which verify the desired efficiency and accuracy of our hybrid scheme.展开更多
We extend the complexity entropy causality plane(CECP) to propose a multi-scale complexity entropy causality plane(MS-CECP) and further use the proposed method to discriminate the deterministic characteristics of ...We extend the complexity entropy causality plane(CECP) to propose a multi-scale complexity entropy causality plane(MS-CECP) and further use the proposed method to discriminate the deterministic characteristics of different oil-in-water flows. We first take several typical time series for example to investigate the characteristic of the MS-CECP and find that the MS-CECP not only describes the continuous loss of dynamical structure with the increase of scale, but also reflects the determinacy of the system. Then we calculate the MS-CECP for the conductance fluctuating signals measured from oil–water two-phase flow loop test facility. The results indicate that the MS-CECP could be an intrinsic measure for indicating oil-in-water two-phase flow structures.展开更多
基金Project“973",a national fundamental research development program
文摘Retrograde condensation frequently occurs during the development of gas condensate reservoirs. The loss of productivity is often observed due to the reduced relative permeability to gas as condensate accumulates near the well bore region. How to describe the condensate blockage effect exactly has been a continuous research topic. However, up to now, the present methods usually over-estimate or underestimate the productivity reduction due to an incorrect understanding of the mechanism of flow in porous medium, which inevitably results in an inaccurate prediction of production performance. It has been found in recent numerous theoretical and experimental studies that capillary number and non-Darcy flow have significant influence on relative permeability in regions near the well bore. The two effects impose opposite impacts on production performance, thus leading to gas condensate flow showing characteristics different from general understanding. It is significant for prediction of performance in gas condensate wells to understand the two effects exactly. The aim of the paper is to describe and analyze the flow dynamics in porous media accurately during the production of gas condensate reservoirs. Based on the description of three-zone flow mechanism, capillary number and non-Darcy effect are incorporated in the analysis of relative permeability, making it possible to describe the effect of condensate blockage. The effect of capillary number and inertial flow on gas and condensate relative permeability is analyzed in detail. Novel Inflow Performance Relation (IPR) models considering high velocity effects are formulated and the contrast analysis of different IPR models is conducted. The result shows that the proposed method can help predict the production performance and productivity more accurately than conventional methods.
基金Supported by National Natural Science Foundation of China (No. 10572143)
文摘The measurement of void fraction is of importance to the oil industry and chemical industry. In this article, the principle and mathematical method of determining the void fraction of horizontal gas-liquid flow by using a sin- gle-energy γ-ray system is described. The γ-ray source is the radioactive isotope of 241Am with γ-ray energy of 59.5 keV. The time-averaged value of the void fraction in a 50.0-mm i.d. transparent horizontal pipeline is measured under various combinations of the liquid flow and gas flow. It is found that increasing the gas flow rate at a fixed liquid flow rate would increase the void fraction. Test data are compared with the predictions of the correlations and a good agreement is found. The result shows that the designed γ-ray system can be used for measuring the void fraction in a horizontal gas-liquid two-phase flow with high accuracy.
基金supported by the Fund of Innovation Research Group of National Natural Science Foundation of China (Grant NO.5052160450323001)Major Program of National Natural Science Foundation of China (Grant No.50536020)
文摘Chokes are one of the most important components of downhole flow-control equipment. The particle erosion mathematical model, which considers particle-particle interaction, was established and used to simulate solid particle movement as well as particle erosion characteristics of the solid-liquid two-phase flow in a choke. The corresponding erosion reduction approach by setting ribs on the inner wall of the choke was advanced. This mathematical model includes three parts: the flow field simulation of the continuous carrier fluid by an Eulerian approach, the particle interaction simulation using the discrete particle hard sphere model by a Lagrangian approach and calculation of erosion rate using semiempirical correlations. The results show that particles accumulated in a narrow region from inlet to outlet of the choke and the dominating factor affecting particle motion is the fluid drag force. As a result, the optimization of rib geometrical parameters indicates that good anti-erosion performance can be achieved by four ribs, each of them with a height (H) of 3 mm and a width (B) of 5 mm equaling the interval between ribs (L).
基金Iranian Offshore Oil Company (IOOC) for financial support of this work
文摘Applying the standard Galerkin finite element method for solving flow problems in porous media encounters some difficulties such as numerical oscillation at the shock front and discontinuity of the velocity field on element faces.Discontinuity of velocity field leads this method not to conserve mass locally.Moreover,the accuracy and stability of a solution is highly affected by a non-conservative method.In this paper,a three dimensional control volume finite element method is developed for twophase fluid flow simulation which overcomes the deficiency of the standard finite element method,and attains high-orders of accuracy at a reasonable computational cost.Moreover,this method is capable of handling heterogeneity in a very rational way.A fully implicit scheme is applied to temporal discretization of the governing equations to achieve an unconditionally stable solution.The accuracy and efficiency of the method are verified by simulating some waterflooding experiments.Some representative examples are presented to illustrate the capability of the method to simulate two-phase fluid flow in heterogeneous porous media.
文摘The drift-flux model has a practical importance in two-phase flow analysis.In this study,a finite volume solution is developed for a transient four-equation drift-flux model through the staggered mesh,leading to the development of a fully implicit discretization method.The main advantage of the fully implicit method is its unconditional stability.Newton's scheme is a popular method of choice for the solution of a nonlinear system of equations arising from fully implicit discretization of field equations.However,the lack of convergence robustness and the construction of Jacobian matrix have created several difficulties for the researchers.In this paper,a fully implicit model is developed based on the SIMPLE algorithm for two-phase flow simulations.The drawbacks of Newton's method are avoided in the developed model.Different limiter functions are considered,and the stabilized method is developed under steady and transient conditions.The results obtained by the numerical modeling are in good agreement with the experimental data.As expected,the results prove that the developed model is not restricted by any stability limit.
基金This work was supported by the National Natural Science Foundation of China(60472019).
文摘Electromagnetic Computer Tomography (ECT) is a method to probe the interior of an inhomogeneous medium via surface measurement in a non-linear way. Due to the great differences in conductivity and permittivity between oil and water in the well, Electromagnetic Tomography Well Logging (ETWL), a new flow imaging measurement system, is proposed to describe the distribution and movement of oil/water two-phase flow in the well by scanning the detected region and applying a suitable data processing algorithm. The results of the numerical simulation and physical modeling show that the system could provide a clear image of the flow profile.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 50674070 and 60374041)the National High Technology Research and Development Program of China (Grant No 2007AA06Z231)
文摘Complex networks have established themselves in recent years as being particularly suitable and flexible for representing and modelling many complex natural and artificial systems. Oil-water two-phase flow is one of the most complex systems. In this paper, we use complex networks to study the inclined oil water two-phase flow. Two different complex network construction methods are proposed to build two types of networks, i.e. the flow pattern complex network (FPCN) and fluid dynamic complex network (FDCN). Through detecting the community structure of FPCN by the community-detection algorithm based on K-means clustering, useful and interesting results are found which can be used for identifying three inclined oil-water flow patterns. To investigate the dynamic characteristics of the inclined oil-water two-phase flow, we construct 48 FDCNs under different flow conditions, and find that the power-law exponent and the network information entropy, which are sensitive to the flow pattern transition, can both characterize the nonlinear dynamics of the inclined oil-water two-phase flow. In this paper, from a new perspective, we not only introduce a complex network theory into the study of the oil-water two-phase flow but also indicate that the complex network may be a powerful tool for exploring nonlinear time series in practice.
基金supported by the National Natural Science Foundation of China(11722104,11671150)supported by the National Natural Science Foundation of China(11571280,11331005)+3 种基金supported by the National Natural Science Foundation of China(11331005,11771150)by GDUPS(2016)the Fundamental Research Funds for the Central Universities of China(D2172260)FANEDD No.201315
文摘The two-phase flow models are commonly used in industrial applications, such as nuclear, power, chemical-process, oil-and-gas, cryogenics, bio-medical, micro-technology and so on. This is a survey paper on the study of compressible nonconservative two-fluid model, drift-flux model and viscous liquid-gas two-phase flow model. We give the research developments of these three two-phase flow models, respectively. In the last part, we give some open problems about the above models.
基金supported by the China State Major Key Project for Basic Researches
文摘We study the mathematical model of two phase compressible flows through porous media. Under the condition that the compressibility of rock, oil, and water is small, we prove that the initial-boundary value problem of the nonlinear system of equations admits a weak solution.
文摘Tow-phase flow mixed variational formulations of evolution filtration problems with seawater intrusion are analyzed. A dual mixed fractional flow velocity-pressure model is considered with an air-fresh water and a fresh water-seawater characterization. For analysis and computational purposes, spatial decompositions based on nonoverlapping multidomains, above and below the sea level, are variationally introduced with internal boundary fluxes dualized as weak transmission constraints. Further, parallel augmented and exactly penalized duality algorithms, and proximation semi-implicit time marching schemes, are established and analyzed.
基金Project supported by the National Natural Science Foundation of China ( Grant Nos. 61104148, 41174109, and 50974095)the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2011ZX05020-006)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20110032120088)
文摘We generate a directed weighted complex network by a method based on Markov transition probability to represent an experimental two-phase flow. We first systematically carry out gas-liquid two-phase flow experiments for measuring the time series of flow signals. Then we construct directed weighted complex networks from various time series in terms of a network generation method based on Markov transition probability. We find that the generated network inherits the main features of the time series in the network structure. In particular, the networks from time series with different dynamics exhibit distinct topological properties. Finally, we construct two-phase flow directed weighted networks from experimental signals and associate the dynamic behavior of gas-liquid two-phase flow with the topological statistics of the generated networks. The results suggest that the topological statistics of two-phase flow networks allow quantitative characterization of the dynamic flow behavior in the transitions among different gas-liquid flow patterns.
基金Supported by National Natural Science Foundation of China (Grant No.50876080)
文摘The China Advanced Research Reactor (CARR) is scheduled to be operated in the autumn of 2008.In this paper,we report preparations for installing the neutron radiography instrument (NRI) and for utilizing it efficiently. The 2-D relative neutron intensity profiles for the water-vapor two-phase flow inside the robe were obtained using the MCNP code without influence of y-ray and electronic-noise.The MCNP simulation of the 2-D neutron intensity profile for the water-vapor two-phase flow was demonstrated.The simulated 2-D neutron intensity profiles could be used as the benchmark data base by calibrating part of the data measured by the CARR-NRI.The 3-D objective images allow us to understand the flow pattern more clearly and it is reconstructed using the MATLAB through the threshold transformation techniques.And thus it is concluded that the MCNP code and the MATLAB are very useful for constructing the benchmark data base for the investigation of the water-vapor two-phase flow using the CARR-NRI.
基金Supported by the National Natural Science Foundation of China(10672022)
文摘Linearized equations of fluid dynamics of cell two phase flow for one dimensional case are proposed. Based on the equations, an analytic solution is derived, in which the frequency of wave is observed. The frequency formula consists of all important parameters of the fluid dynamics. In our observation, the group velocity and phase velocity of the motion of wave propagation are explicitly exhibited as well.
文摘The two-phase flow instabilities observed in through parallel multichannel can be classified into three types,of which only one is intrinsic to parallel multichannel systems.The intrinsic instabilities observed in parallel multichannel system have been studied experimentally.The stable boundary of the flow in such a parallel-channel system are sought,and the nature of inlet flow oscillation in the unstable region has been examined experimentally under various conditions of inlet velocity,heat flux,liquid temperature,cross section of channel and entrance throttling.The results show that parallel multichannel system possess a characteristic oscillation that is quite independent of the magnitude and duration of the initial disturbance,and the stable boundary is influenced by the characteristic frequency of the system as well as by the exit quality when this is low,and upon raising the exit quality and reducing the characteristic frequency,the system increases its instability,and entrance throttling effectively contributes to stabilization of the system.
文摘Experimental and numerical simulation were carried out on vertically upward air-water two-phase flow in the rod bundle with grid spacer. The related numerical simulation has been performed by using the Computational Fluid Dynamics code-CFX4.2, in which lateral interfacial effects based on a two-fluid model are accounted for. This model has been used to evaluate the velocity fields of gas and liquid phases, as well as phase distribution between elements in rod bundle by simulating 1/4 zone of experimental model, and mixing vanes of spacer in this area. Fur- thermore, this model has been used to predict the effects of spacer on flow and pressure drop along the rod bundle. The calculation results show that the mixing vane has significant influence on axial and lateral velocity. In order to obtain some experimental data to verify the numerical solutions, a series of tests, using a specially designed 3×3 rod bundle test section with AFA-2G structure spacer have been performed. An optical probe was used to measure local void fractions. At the same time, the pressure loss has been measured. A comparison between the calculated void pro- file and pressure loss and the measured results shows that the predicted void profiles are consistent at low gas appar- ent velocity. This research shows that the code CFX4.2 can be used to describe the 3-D air-water two-phase flow in the rod bundle channel with grid spacer.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10972010,11028206,11371069,11372052,11402029,and 11472060)the Science and Technology Development Foundation of China Academy of Engineering Physics(CAEP),China(Grant No.2014B0201030)the Defense Industrial Technology Development Program of China(Grant No.B1520132012)
文摘Motivated by inconveniences of present hybrid methods,a gradient-augmented hybrid interface capturing method(GAHM) is presented for incompressible two-phase flow.A front tracking method(FTM) is used as the skeleton of the GAHM for low mass loss and resources.Smooth eulerian level set values are calculated from the FTM interface,and are used for a local interface reconstruction.The reconstruction avoids marker particle redistribution and enables an automatic treatment of interfacial topology change.The cubic Hermit interpolation is employed in all steps of the GAHM to capture subgrid structures within a single spacial cell.The performance of the GAHM is carefully evaluated in a benchmark test.Results show significant improvements of mass loss,clear subgrid structures,highly accurate derivatives(normals and curvatures) and low cost.The GAHM is further coupled with an incompressible multiphase flow solver,Super CE/SE,for more complex and practical applications.The updated solver is evaluated through comparison with an early droplet research.
基金Chinese National Foundation of Natural Science-Key Projects(51339005)
文摘Sediment deposition in the pumping station has a huge negative impact on unit operation.The three-dimensional CFD method has been used to simulate inlet structure flow in pumping station based on the Eulerian solid- liquid two-phase flow model. The numerical results of the preliminary scheme show that sediment deposition occurs in the forebay of pumping station because of poor flow pattern therein. In order to improve hydraulic configuration in the forebay,one modified measure reconstructs water diversion weir shape,and another measure sets a water retaining sill in the approach channel. The simulation results of the modified scheme prove that back flow in the forebay has been eliminated and the sediment deposition region has also been reduced.
文摘We propose a hybrid scheme for computations of incompressible two-phase flows. The incompressible constraint has been replaced by a pressure Poisson-like equation and then the pressure is updated by the modified marker and cell method. Meanwhile, the moment equations in the incompressible Navier-Stokes equations are solved by our semidiscrete Hermite central-upwind scheme, and the interface between the two fluids is considered to be continuous and is described implicitly as the 0.5 level set of a smooth function being a smeared out Heaviside function. It is here named the hybrid scheme. Some numerical experiments are successfully carried out, which verify the desired efficiency and accuracy of our hybrid scheme.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.41174109 and 61104148)the National Science and Technology Major Project of China(Grant No.2011ZX05020-006)the Zhejiang Key Discipline of Instrument Science and Technology,China(Grant No.JL130106)
文摘We extend the complexity entropy causality plane(CECP) to propose a multi-scale complexity entropy causality plane(MS-CECP) and further use the proposed method to discriminate the deterministic characteristics of different oil-in-water flows. We first take several typical time series for example to investigate the characteristic of the MS-CECP and find that the MS-CECP not only describes the continuous loss of dynamical structure with the increase of scale, but also reflects the determinacy of the system. Then we calculate the MS-CECP for the conductance fluctuating signals measured from oil–water two-phase flow loop test facility. The results indicate that the MS-CECP could be an intrinsic measure for indicating oil-in-water two-phase flow structures.