In order to raise the efficiency,automatization and intelligentization of condition monitoring and fault diagnosis for complex equipment systems,rough set theory is used to the field. A feature reduction algorithm bas...In order to raise the efficiency,automatization and intelligentization of condition monitoring and fault diagnosis for complex equipment systems,rough set theory is used to the field. A feature reduction algorithm based on rough set theory is adopted to extract condition information in monitoring and diagnosis for an engine,so that the technology condition monitoring parameters are optimized. The decision tables for each fault source are built and the diagnosis rules rooting in rough set reduction is applied to carry through intelligent fault diagnosis. The cases studied show that rough set method in condition monitoring and fault diagnosis can lighten the work burden in feature selection and afford advantages for autonomic learning and decision during diagnosis.展开更多
It is an urgent project to realize online and overall condition monitoring and timely fault diagnosis for large-scale mobile and complex equipment. Moreover, most of the existing large-scale complex equipment has quit...It is an urgent project to realize online and overall condition monitoring and timely fault diagnosis for large-scale mobile and complex equipment. Moreover, most of the existing large-scale complex equipment has quite insufficient accessibility of examination, although it still has quite a long service life. The decentralized and overall condition monitoring, as a new concept, is proposed from the point of view of the whole system. A set of complex equipment is divided into several parts in terms of concrete equipment. Every part is processed via one detecting unit, and the main detecting unit is connected with other units. The management work and communications with the remote monitoring center have been taken on by it. Consequently, the difficulty of realizing a condition monitoring system and the complexity of processing information is reduced greatly. Furthermore, excellent maintainability of the condition monitoring system is obtained because of the modularization design. Through an application example, the design and realization of the decentralized and overall condition monitoring system is introduced specifically. Some advanced technologies, such as, micro control unit (MCU), advanced RISC machines (ARM), and control area network (CAN), have been adopted in the system. The system's applicability for the existing large-scale mobile and complex equipment is tested.展开更多
针对复杂多变的工作环境给风电机组状态监测带来的挑战,提出了一种基于深度学习和注意力机制组合的状态监测与健康评估方法。首先,将风电机组数据采集与监控(supervisory control and data acquisition,简称SCADA)系统数据进行预处理;其...针对复杂多变的工作环境给风电机组状态监测带来的挑战,提出了一种基于深度学习和注意力机制组合的状态监测与健康评估方法。首先,将风电机组数据采集与监控(supervisory control and data acquisition,简称SCADA)系统数据进行预处理;其次,将卷积神经网络(convolutional neural networks,简称CNN)和长短期记忆网络(long short-term memory,简称LSTM)相结合提取数据的时空特征,并引入注意力机制(Attention)为LSTM分配相应的权重;然后,利用指数加权移动平均来设置阈值,通过分析均方根误差实现风电机组的状态监测;最后,通过实例对风电机组的主轴承、发电机定子和叶片变桨电机状态进行监测分析和健康评估,验证该方法的有效性。展开更多
文摘In order to raise the efficiency,automatization and intelligentization of condition monitoring and fault diagnosis for complex equipment systems,rough set theory is used to the field. A feature reduction algorithm based on rough set theory is adopted to extract condition information in monitoring and diagnosis for an engine,so that the technology condition monitoring parameters are optimized. The decision tables for each fault source are built and the diagnosis rules rooting in rough set reduction is applied to carry through intelligent fault diagnosis. The cases studied show that rough set method in condition monitoring and fault diagnosis can lighten the work burden in feature selection and afford advantages for autonomic learning and decision during diagnosis.
基金This project was supported by the Hebei Provincial Nature Science Foundation (E20070011048).
文摘It is an urgent project to realize online and overall condition monitoring and timely fault diagnosis for large-scale mobile and complex equipment. Moreover, most of the existing large-scale complex equipment has quite insufficient accessibility of examination, although it still has quite a long service life. The decentralized and overall condition monitoring, as a new concept, is proposed from the point of view of the whole system. A set of complex equipment is divided into several parts in terms of concrete equipment. Every part is processed via one detecting unit, and the main detecting unit is connected with other units. The management work and communications with the remote monitoring center have been taken on by it. Consequently, the difficulty of realizing a condition monitoring system and the complexity of processing information is reduced greatly. Furthermore, excellent maintainability of the condition monitoring system is obtained because of the modularization design. Through an application example, the design and realization of the decentralized and overall condition monitoring system is introduced specifically. Some advanced technologies, such as, micro control unit (MCU), advanced RISC machines (ARM), and control area network (CAN), have been adopted in the system. The system's applicability for the existing large-scale mobile and complex equipment is tested.
文摘针对复杂多变的工作环境给风电机组状态监测带来的挑战,提出了一种基于深度学习和注意力机制组合的状态监测与健康评估方法。首先,将风电机组数据采集与监控(supervisory control and data acquisition,简称SCADA)系统数据进行预处理;其次,将卷积神经网络(convolutional neural networks,简称CNN)和长短期记忆网络(long short-term memory,简称LSTM)相结合提取数据的时空特征,并引入注意力机制(Attention)为LSTM分配相应的权重;然后,利用指数加权移动平均来设置阈值,通过分析均方根误差实现风电机组的状态监测;最后,通过实例对风电机组的主轴承、发电机定子和叶片变桨电机状态进行监测分析和健康评估,验证该方法的有效性。