Two simple and effective control strategies for a multi-axle heavy truck, modified skyhook damping (MSD) control and proportional-integration-derivative (PID) control, were implemented into functional virtual prototyp...Two simple and effective control strategies for a multi-axle heavy truck, modified skyhook damping (MSD) control and proportional-integration-derivative (PID) control, were implemented into functional virtual prototype (FVP) model and compared in terms of road friendliness and ride comfort. A four-axle heavy truck-road coupling system model was established using FVP technology and validated through a ride comfort test. Then appropriate passive air suspensions were chosen to replace the rear tandem suspensions of the original truck model for preliminary optimization. The mechanical properties and time lag of dampers were taken into account in simulations of MSD and PID semi-active dampers implemented using MATLAB/Simulink. Through co-simulations with Adams and MATLAB, the effects of semi-active MSD and PID control were analyzed and compared, and control parameters which afforded the best comprehensive performance for each control strategy were chosen. Simulation results indicate that compared with the passive air suspension truck, semi-active MSD control improves both ride comfort and road-friendliness markedly, with optimization ratios of RMS vertical acceleration and RMS tyre force ranging from 10.1% to 44.8%. However, semi-active PID control only reduces vertical vibration of the driver's seat by 11.1%, 11.1% and 10.9% on A, B and C level roads respectively. Both strategies are robust to the variation of road level.展开更多
A finite element analysis method was used to simulate the stamping process of the blade of a large concrete-mixer truck. The updated Lagrange method and the elasto-plastic constitutive equation were adopted to solve t...A finite element analysis method was used to simulate the stamping process of the blade of a large concrete-mixer truck. The updated Lagrange method and the elasto-plastic constitutive equation were adopted to solve the large strain and displacement deformation of the blade. A modified Coulomb friction model was used to solve the sliding contact between the blade and the dies. The von Mises stress distribution in the blade, the spatial displacement variation and the spring-back of the typical node were investigated in the simulation. The von Mises stress in the blade where the spring-back occurs is lowered from 463.0MPa to 150.0MPa before and after the spring-back. A typical node in the blade has a 3.33mm spring-back in Z direction. The results of the (experiments) agree well with the simulation. The analysis results are valuable for designing optimal tool dies.展开更多
To evaluate the operator health risk exposed to whole-body vibration(WBV) while the electric-shovel loads the ore on the truck body, the semi-truck mathematical model and 3-D virtual prototype were built to simulate t...To evaluate the operator health risk exposed to whole-body vibration(WBV) while the electric-shovel loads the ore on the truck body, the semi-truck mathematical model and 3-D virtual prototype were built to simulate the high shockwave of truck cab under the shovel loading. Discrete element method was utilized to accurately estimate the impacting force on the truck body. Based on the ISO 2631-5 criteria, the Sed is about 0.56 MPa in both models, which means that the dump operators have a high probability of adverse health effects over long-term exposure to these vibrations. The 4-DOF operator model was built to investigate the biodynamic response of seated-human body exposed to WBV in terms of the transmission of vibrations through the body. The results show that the response peak is in the frequency range of 4-6 Hz corresponding to the primary body resonant frequency.展开更多
Mining machineries are generally exposed to intensive vibrations in harsh mining environment. If vibrations are beyond the tolerable limit, the machine and its operator health will be under the risk. In this work, the...Mining machineries are generally exposed to intensive vibrations in harsh mining environment. If vibrations are beyond the tolerable limit, the machine and its operator health will be under the risk. In this work, the vibration of a mining truck at different operational conditions are simulated and discussed. To achieve this aim, three haul roads with low, medium and poor qualities are considered based on the ISO standard. Accordingly, the vibration of a mining truck in different speeds, payload and distribution qualities of materials in the dump body are evaluated in each haul road quality using Trucksim software. The simulation results with statistical discussions indicate that the truck speed and the materials distribution quality have significant effects on the root mean square(RMS) of vertical vibrations. However, the effect of the payload is not considerable on the RMS. Moreover, the accumulation of materials on the rear side of the truck dump body is efficient on the vibrational health risk.展开更多
基金Projects(51078087, 51178158) supported by the National Natural Science Foundation of ChinaProject(11040606Q39) supported by the Natural Science Foundation of Anhui Province, ChinaProjects(2012HGQC0015, 2011HGBZ0945) supported by the Fundamental Research Funds for the Central Universities
文摘Two simple and effective control strategies for a multi-axle heavy truck, modified skyhook damping (MSD) control and proportional-integration-derivative (PID) control, were implemented into functional virtual prototype (FVP) model and compared in terms of road friendliness and ride comfort. A four-axle heavy truck-road coupling system model was established using FVP technology and validated through a ride comfort test. Then appropriate passive air suspensions were chosen to replace the rear tandem suspensions of the original truck model for preliminary optimization. The mechanical properties and time lag of dampers were taken into account in simulations of MSD and PID semi-active dampers implemented using MATLAB/Simulink. Through co-simulations with Adams and MATLAB, the effects of semi-active MSD and PID control were analyzed and compared, and control parameters which afforded the best comprehensive performance for each control strategy were chosen. Simulation results indicate that compared with the passive air suspension truck, semi-active MSD control improves both ride comfort and road-friendliness markedly, with optimization ratios of RMS vertical acceleration and RMS tyre force ranging from 10.1% to 44.8%. However, semi-active PID control only reduces vertical vibration of the driver's seat by 11.1%, 11.1% and 10.9% on A, B and C level roads respectively. Both strategies are robust to the variation of road level.
基金Project(2002A1040703) supported by the Science and Technology Fund of Guangdong Province
文摘A finite element analysis method was used to simulate the stamping process of the blade of a large concrete-mixer truck. The updated Lagrange method and the elasto-plastic constitutive equation were adopted to solve the large strain and displacement deformation of the blade. A modified Coulomb friction model was used to solve the sliding contact between the blade and the dies. The von Mises stress distribution in the blade, the spatial displacement variation and the spring-back of the typical node were investigated in the simulation. The von Mises stress in the blade where the spring-back occurs is lowered from 463.0MPa to 150.0MPa before and after the spring-back. A typical node in the blade has a 3.33mm spring-back in Z direction. The results of the (experiments) agree well with the simulation. The analysis results are valuable for designing optimal tool dies.
基金Project(2006BAB11B03)supported by the National Key Technology Research and Development Program of ChinaProject(Z1011030055010004)supported by Beijing Municipal Science Program of China
文摘To evaluate the operator health risk exposed to whole-body vibration(WBV) while the electric-shovel loads the ore on the truck body, the semi-truck mathematical model and 3-D virtual prototype were built to simulate the high shockwave of truck cab under the shovel loading. Discrete element method was utilized to accurately estimate the impacting force on the truck body. Based on the ISO 2631-5 criteria, the Sed is about 0.56 MPa in both models, which means that the dump operators have a high probability of adverse health effects over long-term exposure to these vibrations. The 4-DOF operator model was built to investigate the biodynamic response of seated-human body exposed to WBV in terms of the transmission of vibrations through the body. The results show that the response peak is in the frequency range of 4-6 Hz corresponding to the primary body resonant frequency.
文摘Mining machineries are generally exposed to intensive vibrations in harsh mining environment. If vibrations are beyond the tolerable limit, the machine and its operator health will be under the risk. In this work, the vibration of a mining truck at different operational conditions are simulated and discussed. To achieve this aim, three haul roads with low, medium and poor qualities are considered based on the ISO standard. Accordingly, the vibration of a mining truck in different speeds, payload and distribution qualities of materials in the dump body are evaluated in each haul road quality using Trucksim software. The simulation results with statistical discussions indicate that the truck speed and the materials distribution quality have significant effects on the root mean square(RMS) of vertical vibrations. However, the effect of the payload is not considerable on the RMS. Moreover, the accumulation of materials on the rear side of the truck dump body is efficient on the vibrational health risk.