Structural redundancy elimination in case resource pools (CRP) is critical for avoiding performance bottlenecks and maintaining robust decision capabilities in cloud computing services. For these purposes, this pape...Structural redundancy elimination in case resource pools (CRP) is critical for avoiding performance bottlenecks and maintaining robust decision capabilities in cloud computing services. For these purposes, this paper proposes a novel approach to ensure redundancy elimination of a reasoning system in CRP. By using α entropy and mutual information, functional measures to eliminate redundancy of a system are developed with respect to a set of outputs. These measures help to distinguish both the optimal feature and the relations among the nodes in reasoning networks from the redundant ones with the elimination criterion. Based on the optimal feature and its harmonic weight, a model for knowledge reasoning in CRP (CRPKR) is built to complete the task of query matching, and the missing values are estimated with Bayesian networks. Moreover, the robustness of decisions is verified through parameter analyses. This approach is validated by the simulation with benchmark data sets using cloud SQL. Compared with several state-of-the-art techniques, the results show that the proposed approach has a good performance and boosts the robustness of decisions.展开更多
The tracking, telemetry and command (TT&C) mission is extremely reliable for its characters of small time horizon and high redundancy. The combined forcing and failure biasing (CFFB) method that is usually used f...The tracking, telemetry and command (TT&C) mission is extremely reliable for its characters of small time horizon and high redundancy. The combined forcing and failure biasing (CFFB) method that is usually used for simulating the unreliability of the highly dependable mission system seems not so efficient for the TT&C mission. The concept about the importance of failure transition is proposed based on the logical relationship between TT&C mission and its involved resources. Then, the importance is used for readjusting the transition rate of the failure transition when using the forcing and failure biasing during the simulation. Examples show that the improved CFFB method can evidently increase the occurrence of the TT&C mission failure event and decrease the sample variance. More redundancy of the TT&C mission leads to the improved CFFB method more efficient.展开更多
The problem of stochastically allocating redundant com- ponents to increase the system lifetime is an important topic of reliability. An optimal redundancy allocation is proposed, which maximizes the expected lifetime...The problem of stochastically allocating redundant com- ponents to increase the system lifetime is an important topic of reliability. An optimal redundancy allocation is proposed, which maximizes the expected lifetime of a reliability system with sub- systems consisting of components in parallel. The constraints are minimizing the total resources and the sizes of subsystems. In this system, each switching is independent with each other and works with probability p. Two optimization problems are studied by an incremental algorithm and dynamic programming technique respectively. The incremental algorithm proposed could obtain an approximate optimal solution, and the dynamic programming method could generate the optimal solution,展开更多
In order to make systems that are based on unreliable components reliable, the design of fault tolerant architectures will be necessary. Inspired by von Neumann's negative AND(NAND)multiplexing and William's inter...In order to make systems that are based on unreliable components reliable, the design of fault tolerant architectures will be necessary. Inspired by von Neumann's negative AND(NAND)multiplexing and William's interwoven redundant logic, this paper presents a fault tolerant technique based on redundancy-modified NAND gates for future nanocomputers. Bifurcation theory is used to analyze fault tolerant ability of the system and the simulation results show that the new system has a much higher fault tolerant ability than the conventional multiplexing based on NAND gates.According to the evaluation, the proposed architecture can tolerate a device error rate of up to 10-1, with multiple redundant components. This fault tolerant technique is potentially useful for future nanoelectronics.展开更多
基金supported by the National Natural Science Foundation of China (7117114371201087)+1 种基金the Tianjin Municipal Research Program of Application Foundation and Advanced Technology of China (10JCY-BJC07300)the Science and Technology Program of FOXCONN Group (120024001156)
文摘Structural redundancy elimination in case resource pools (CRP) is critical for avoiding performance bottlenecks and maintaining robust decision capabilities in cloud computing services. For these purposes, this paper proposes a novel approach to ensure redundancy elimination of a reasoning system in CRP. By using α entropy and mutual information, functional measures to eliminate redundancy of a system are developed with respect to a set of outputs. These measures help to distinguish both the optimal feature and the relations among the nodes in reasoning networks from the redundant ones with the elimination criterion. Based on the optimal feature and its harmonic weight, a model for knowledge reasoning in CRP (CRPKR) is built to complete the task of query matching, and the missing values are estimated with Bayesian networks. Moreover, the robustness of decisions is verified through parameter analyses. This approach is validated by the simulation with benchmark data sets using cloud SQL. Compared with several state-of-the-art techniques, the results show that the proposed approach has a good performance and boosts the robustness of decisions.
基金supported by the National Natural Science Foundation of China (71071159)
文摘The tracking, telemetry and command (TT&C) mission is extremely reliable for its characters of small time horizon and high redundancy. The combined forcing and failure biasing (CFFB) method that is usually used for simulating the unreliability of the highly dependable mission system seems not so efficient for the TT&C mission. The concept about the importance of failure transition is proposed based on the logical relationship between TT&C mission and its involved resources. Then, the importance is used for readjusting the transition rate of the failure transition when using the forcing and failure biasing during the simulation. Examples show that the improved CFFB method can evidently increase the occurrence of the TT&C mission failure event and decrease the sample variance. More redundancy of the TT&C mission leads to the improved CFFB method more efficient.
基金supported by the National Natural Science Foundation of China(7117217271101158+3 种基金71272058)the Program for New Century Excellent Talents in University(NCET-10-0043)the Key Project Cultivation Fund of the Scientific and Technical Innovation Program of Beijing Institute of Technology(2011CX01001)the Special Fund of International Science and Technology Cooperation Program of Beijing Institute of Technology(GZ2014215101)
文摘The problem of stochastically allocating redundant com- ponents to increase the system lifetime is an important topic of reliability. An optimal redundancy allocation is proposed, which maximizes the expected lifetime of a reliability system with sub- systems consisting of components in parallel. The constraints are minimizing the total resources and the sizes of subsystems. In this system, each switching is independent with each other and works with probability p. Two optimization problems are studied by an incremental algorithm and dynamic programming technique respectively. The incremental algorithm proposed could obtain an approximate optimal solution, and the dynamic programming method could generate the optimal solution,
基金supported by the National Natural Science Foundation of China(61571149)
文摘In order to make systems that are based on unreliable components reliable, the design of fault tolerant architectures will be necessary. Inspired by von Neumann's negative AND(NAND)multiplexing and William's interwoven redundant logic, this paper presents a fault tolerant technique based on redundancy-modified NAND gates for future nanocomputers. Bifurcation theory is used to analyze fault tolerant ability of the system and the simulation results show that the new system has a much higher fault tolerant ability than the conventional multiplexing based on NAND gates.According to the evaluation, the proposed architecture can tolerate a device error rate of up to 10-1, with multiple redundant components. This fault tolerant technique is potentially useful for future nanoelectronics.