期刊文献+
共找到606篇文章
< 1 2 31 >
每页显示 20 50 100
Fast segmentation approach for SAR image based on simple Markov random field 被引量:8
1
作者 Xiaogang Lei Ying Li Na Zhao Yanning Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第1期31-36,共6页
Traditional image segmentation methods based on MRF converge slowly and require pre-defined weight. These disadvantages are addressed, and a fast segmentation approach based on simple Markov random field (MRF) for S... Traditional image segmentation methods based on MRF converge slowly and require pre-defined weight. These disadvantages are addressed, and a fast segmentation approach based on simple Markov random field (MRF) for SAR image is proposed. The approach is firstly used to perform coarse segmentation in blocks. Then the image is modeled with simple MRF and adaptive variable weighting forms are applied in homogeneous and heterogeneous regions. As a result, the convergent speed is accelerated while the segmentation results in homogeneous regions and boarders are improved. Simulations with synthetic and real SAR images demonstrate the effectiveness of the proposed approach. 展开更多
关键词 SAR image segmentation simple Markov random field coarse segmentation maximum a posterior iterated condition mode.
在线阅读 下载PDF
基于随机提示的中文法律领域命名实体识别
2
作者 周鹏 何军 《计算机工程与设计》 北大核心 2025年第4期1167-1173,共7页
为解决中文法律领域命名实体识别面临的数据集稀缺和通用命名实体识别模型未充分利用BERT文本推理能力的问题,提出一种基于随机提示的命名实体识别方法。设计专用于法律领域的实体类型信息融合层,通过随机融合多角度的实体类型解释信息... 为解决中文法律领域命名实体识别面临的数据集稀缺和通用命名实体识别模型未充分利用BERT文本推理能力的问题,提出一种基于随机提示的命名实体识别方法。设计专用于法律领域的实体类型信息融合层,通过随机融合多角度的实体类型解释信息,结合BERT和BiLSTM,学习文本中融合实体类型解释信息的上下文语义特征。将命名实体识别任务建模为序列标注任务,通过CRF获取序列的标签信息。实验结果表明,该方法在中文法律领域命名实体识别任务中取得了显著的性能提升,F1值达到93.06%。 展开更多
关键词 中文法律实体 深度学习 命名实体识别 随机提示 双向长短时记忆网络 序列标注 条件随机场
在线阅读 下载PDF
融合数据增强的互花米草入侵关联要素实体识别方法
3
作者 李忠伟 张文丰 +1 位作者 李永 李明轩 《计算机工程与设计》 北大核心 2025年第2期603-609,共7页
为解决互花米草入侵领域的训练数据匮乏,存在实体特征提取不准确的问题,提出一种融合数据增强的互花米草入侵关联要素识别深度学习模型。将训练数据采用同类实体随机交叉互换的方法进行数据增强,利用BERT预训练获得互花米草入侵关联要... 为解决互花米草入侵领域的训练数据匮乏,存在实体特征提取不准确的问题,提出一种融合数据增强的互花米草入侵关联要素识别深度学习模型。将训练数据采用同类实体随机交叉互换的方法进行数据增强,利用BERT预训练获得互花米草入侵关联要素的上下文信息;使用BiLSTM进一步提取特征,利用CRF得到实体的标签约束。通过对比不同模型在自建数据集上的精确率、召回率和F1分数,验证了该模型在互花米草入侵领域实体识别的有效性。 展开更多
关键词 命名实体识别 互花米草入侵 深度学习 数据增强 预训练模型 双向长短期记忆网络 条件随机场
在线阅读 下载PDF
南美白对虾养殖领域中文命名实体识别数据集构建
4
作者 彭小红 邓峰 余应淮 《计算机工程与应用》 北大核心 2025年第9期353-362,共10页
该研究致力于构建一个高质量的数据集,用于南美白对虾养殖领域的命名实体识别(named entity recognition,NER)任务,命名为VamNER。为确保数据集的多样性,从CNKI数据库中收集了近10年的高质量论文,并结合权威书籍进行语料构建。邀请专家... 该研究致力于构建一个高质量的数据集,用于南美白对虾养殖领域的命名实体识别(named entity recognition,NER)任务,命名为VamNER。为确保数据集的多样性,从CNKI数据库中收集了近10年的高质量论文,并结合权威书籍进行语料构建。邀请专家讨论实体类型,并经过专业培训的标注人员使用IOB2标注格式进行标注,标注过程分为预标注和正式标注两个阶段以提高效率。在预标注阶段,标注者间一致性(inter-annotation agreement,IAA)达到0.87,表明标注人员的一致性较高。最终,VamNER包含6115个句子,总字符数达384602,涵盖10个实体类型,共有12814个实体。研究通过与多个通用领域数据集和一个特定领域数据集进行比较,揭示了VamNER的独特特性。在实验中使用了预训练的基于变换器的双向编码器表示(bidirectional encoder representations from Transformers,BERT)模型、双向长短期记忆神经网络(bidirectional long short-term memory network,BiLSTM)和条件随机场模型(conditional random fields,CRF),最优模型在测试集上的F1值达到82.8%。VamNER成为首个专注于南美白对虾养殖领域的NER数据集,为中文特定领域NER研究提供了丰富资源,有望推动水产养殖领域NER研究的发展。 展开更多
关键词 命名实体识别 VamNER数据集 标注者间一致性(IAA) 基于变换器的双向编码器表示(BERT) 双向长短期记忆神经网络(BiLSTM) 条件随机场(CRF)
在线阅读 下载PDF
伪标签置信度调控结直肠癌病理图像半监督语义分割
5
作者 徐晗晗 张印辉 +4 位作者 何自芬 刘珈岑 李振辉 吴琳 史本杰 《光学精密工程》 北大核心 2025年第4期591-609,共19页
为了改善结直肠癌病理图像半监督语义分割任务中存在的低置信度伪标签利用不充分、高置信度伪标签准确性亟需优化和伪标签类别不平衡等问题,本文提出了一种伪标签置信度调控方法,旨在实现结直肠癌病理图像的高质量多类别半监督语义分割... 为了改善结直肠癌病理图像半监督语义分割任务中存在的低置信度伪标签利用不充分、高置信度伪标签准确性亟需优化和伪标签类别不平衡等问题,本文提出了一种伪标签置信度调控方法,旨在实现结直肠癌病理图像的高质量多类别半监督语义分割。首先,基于教师-学生模型的半监督语义分割框架,提出在一致性正则化中嵌入类别置信度调控,通过对未训练教师模型生成的低置信度伪标签中的混淆类别进行移除以增强确定性,从而提升低置信度伪标签的贡献率。其次,提出对训练后教师模型生成的伪标签进行先筛选后细化的操作范式,通过对筛选后的高置信度伪标签进行基于条件随机场的细化操作,以改善高置信度伪标签中边界模糊和缺乏语义信息的问题。最后,为缓解伪标签数据中的类别不平衡,设计了一种基于伪标签类别数判定的自适应随机级联强数据增强的方法。通过自建结直肠癌病理图像数据集以及公开的多类别病理图像数据集进行实验验证,本文方法实现了74.09%的结直肠癌病理图像四个类的平均分割精度,相比于基准网络提高6.43%,为结直肠癌病理图像半监督语义分割提供有力的算法支持。 展开更多
关键词 结直肠癌病理图像 半监督语义分割 教师-学生模型 一致性正则化 条件随机场 数据增强
在线阅读 下载PDF
基于规则的天然气净化典型设备知识抽取方法
6
作者 纪天浩 彭传波 +3 位作者 裴爱霞 周健 刘持强 李大字 《石油与天然气化工》 北大核心 2025年第3期146-152,共7页
目的 含硫天然气净化生产易燃易爆、连续且过程复杂,安全风险大,故障归因与溯源对操作人员排查隐患、预防事故和保障安全生产至关重要,对工程人员操作有重要指导意义。知识图谱可高效存储管理化工生产资料,为故障溯源等任务提供数据支持... 目的 含硫天然气净化生产易燃易爆、连续且过程复杂,安全风险大,故障归因与溯源对操作人员排查隐患、预防事故和保障安全生产至关重要,对工程人员操作有重要指导意义。知识图谱可高效存储管理化工生产资料,为故障溯源等任务提供数据支持,提升运维效率。但现有生产运维资料多为非结构化文本,限制了知识图谱的构建。针对此问题,提出了一种双向长短期记忆网络(BiLSTM)与条件随机场(CRF)融合规则匹配的知识抽取方法。方法 首先采集工业过程的生产资料或运维资料,作为原始数据并进行预处理,接下来利用BiLSTM-CRF和规则匹配相结合的方法进行知识抽取,将抽取的数据存储于图数据库中。结果 以天然气净化厂闪蒸罐为例,使用该方法构建的知识图谱与专家经验构建的理论图谱结构基本一致。结论 实验结果表明,所提出的模型能有效地提取装置的生产资料或运维资料中的知识。构建的知识图谱增强了资料的可读性,便于运维人员查询和学习。 展开更多
关键词 天然气净化 长短时记忆网络 条件随机场 命名实体识别 知识抽取 知识图谱
在线阅读 下载PDF
基于高分辨率重建的矿区遥感图像目标分割算法
7
作者 王晓红 苏兵 韩红章 《金属矿山》 北大核心 2025年第4期195-200,共6页
高分辨率遥感图像中的矿山目标具有复杂的形态、纹理和光照特征,给目标分割带来了挑战。为提高矿山目标分割精度和效率,提出了一种基于高分辨率重建的矿区遥感图像目标分割算法。该算法首先利用超像素分割方法将遥感图像分割成若干块,... 高分辨率遥感图像中的矿山目标具有复杂的形态、纹理和光照特征,给目标分割带来了挑战。为提高矿山目标分割精度和效率,提出了一种基于高分辨率重建的矿区遥感图像目标分割算法。该算法首先利用超像素分割方法将遥感图像分割成若干块,利用深度学习模型提取每个块的特征,并将其重建为高分辨率的特征图;然后利用标记分水岭算法对重建的特征图进行进一步分割,得到矿山目标的精细边界;最后通过条件随机场对分割结果进行优化,消除噪声和误分区域。在真实的高分辨率遥感图像上进行了试验,结果表明:该算法在矿山目标分割方面具有较高的准确率和鲁棒性,且具有较快的运行速度,适用于大规模的遥感图像处理,准确率达到了0.93,召回率为0.92,F_(1)分数为0.94,平均交并比(mIoU)达到0.85。所提算法为高分辨率遥感图像精确分割提供了一种有效方法,对于促进矿区遥感技术应用有一定的意义。 展开更多
关键词 高分辨率重建 矿区遥感图像 目标分割 深度学习模型 条件随机场
在线阅读 下载PDF
基于双向长短时记忆网络的地铁应急知识抽取与推理
8
作者 叶雨涛 王鹏玲 +2 位作者 徐瑞华 肖晓芳 葛健豪 《同济大学学报(自然科学版)》 北大核心 2025年第3期420-429,共10页
为解决文本类地铁应急处置流程存在的流程顺序关系不明确、流程执行人员模糊等问题,提出了基于BiLSTM-CRF(Bidirectional Long Short-Term Memory-Conditional Random Field)的地铁应急处置知识抽取与推理方法。首先,利用BiLSTM-CRF方... 为解决文本类地铁应急处置流程存在的流程顺序关系不明确、流程执行人员模糊等问题,提出了基于BiLSTM-CRF(Bidirectional Long Short-Term Memory-Conditional Random Field)的地铁应急处置知识抽取与推理方法。首先,利用BiLSTM-CRF方法对地铁应急处置流程的文本资料进行命名实体识别,完成文本资料的知识抽取;其次,选用TransD模型对识别后实体数据进行知识推理,从而完成以实体和属性对为节点、关系对为边的知识图谱构建;最后,利用Neo4j图数据库对构建的地铁应急处置流程知识图谱进行了可视化展示和案例分析。研究结果表明,基于BiLSTM-CRF的知识抽取模型的精确率、召回率和F1值均达到了90%以上,且基于BiLSTM-CRF的TransD模型的推理结果准确率提升了22.92%,保证了知识图谱构建的准确性,可为地铁应急管理提供决策支持。 展开更多
关键词 地铁应急处置 知识图谱 条件随机场的双向长短时网络 TransD模型 知识抽取
在线阅读 下载PDF
融合BERT BiLSTM CRF的城市内涝灾害风险要素识别方法研究
9
作者 张乐 张海龙 +1 位作者 李锋 吴敏 《安全与环境学报》 北大核心 2025年第8期3176-3188,共13页
为了实现在城市内涝舆情信息中快速、精准地识别相关风险要素,首先基于新浪微博平台,对用户评论信息及媒体发布信息进行采集、整理及标注,构建了城市内涝灾害事件语料数据集。进而针对城市内涝舆情信息格式不统一、语义复杂且风险要素... 为了实现在城市内涝舆情信息中快速、精准地识别相关风险要素,首先基于新浪微博平台,对用户评论信息及媒体发布信息进行采集、整理及标注,构建了城市内涝灾害事件语料数据集。进而针对城市内涝舆情信息格式不统一、语义复杂且风险要素识别的专业性、精准度要求较高等问题,结合自然灾害系统理论的风险要素框架,提出了一种基于双向编码器表征法-双向长短期记忆-条件随机场(Bidirectional Encoder Representations from Transformers-Bidirectional Long Short-Term Memory-Conditional Random Field,BERT-BiLSTM-CRF)的识别方法,并开展了一系列模型验证试验。对比试验结果表明,该模型在准确率、召回率、F_(1)三项指标上均有较好表现,其中准确率为84.62%,召回率为86.19%,F_(1)为85.35%,优于其他对比模型。消融试验结果表明,BERT预训练模型对于该模型性能有着更为显著的影响。综合上述试验结果,可以验证该模型能够有效识别城市内涝舆情信息中的各类风险要素,进而为城市内涝灾害风险管控的数智化转型提供研究依据。 展开更多
关键词 公共安全 城市内涝 双向编码器表征法 双向长短期记忆网络 条件随机场 舆情信息 风险要素识别
在线阅读 下载PDF
机床夹具设计知识图谱构建及应用
10
作者 张称心 孙家盛 段阳 《机电工程》 北大核心 2025年第1期106-116,共11页
针对目前机床夹具设计领域中存在的知识挖掘深度不足、利用率不高且过度依赖设计人员经验等问题,提出了一种基于自顶向下方式的机床夹具设计知识图谱构建方法。首先,将机床夹具设计知识分为原理规则类和功能描述类,利用本体建模语言(OWL... 针对目前机床夹具设计领域中存在的知识挖掘深度不足、利用率不高且过度依赖设计人员经验等问题,提出了一种基于自顶向下方式的机床夹具设计知识图谱构建方法。首先,将机床夹具设计知识分为原理规则类和功能描述类,利用本体建模语言(OWL)对这两类知识进行了本体建模,构建了知识图谱的模式层;其次,在模式层的指导下,以机床夹具设计原理规则文档和设计实例为数据源,利用双向长短期记忆网络-条件随机场算法(BiLSTM-CRF)对其进行了知识抽取,得到了结构化的机床夹具设计知识;然后,运用Neo4j图数据库存储结构化的机床夹具设计知识,得到了知识图谱的数据层;最后,以轴承套筒法兰的夹具设计为例,对该方法的可行性进行了验证;考虑到企业对同一夹具结构的不同技术需求,提出了一种基于图形数据科学算法(GDS)的相似元件替代法,对夹具知识图谱中47个定位元件节点进行了相似度计算,得到了1081条相似度数据样本,并构建了综合评判模型。研究结果表明:当相似度阈值设置为0.76时,将定位元件进行替换的精确率达到了84%。通过建立知识图谱,完成了机床夹具设计的两类知识的有效关联,为构建数据驱动的机床夹具智能设计奠定了基础。 展开更多
关键词 机械设计 智能设计 知识图谱 知识抽取 知识融合 本体建模语言 双向长短期记忆网络-条件随机场算法 图形数据科学算法
在线阅读 下载PDF
基于视觉显著性的输电线路杆塔鸟窝检测
11
作者 余志宏 储露露 +2 位作者 马云鹏 周亚琴 李庆武 《计算机应用与软件》 北大核心 2025年第1期137-142,204,共7页
鸟类在输电线路杆塔上筑巢会对电网的稳定运行造成极大的威胁。针对无人机航拍图像中鸟窝检测问题,提出一种基于视觉显著性的输电线路杆塔鸟窝检测算法,该算法通过灰度值分析定位出线路杆塔所在的区域并将其作为感兴趣区域,提取图像的... 鸟类在输电线路杆塔上筑巢会对电网的稳定运行造成极大的威胁。针对无人机航拍图像中鸟窝检测问题,提出一种基于视觉显著性的输电线路杆塔鸟窝检测算法,该算法通过灰度值分析定位出线路杆塔所在的区域并将其作为感兴趣区域,提取图像的三种显著性特征,并采用条件随机场模型进行特征融合得到显著图;根据鸟窝的形状特征制定约束条件,排除电力线和云层等伪目标的干扰,得到鸟窝检测结果。实验结果表明,所提出的方法能够准确地检测出输电线路杆塔上的鸟窝。 展开更多
关键词 输电线路鸟窝检测 视觉显著性检测 计算机视觉 多特征融合 条件随机场
在线阅读 下载PDF
Intelligent modeling method for OV models in DoDAF2.0 based on knowledge graph
12
作者 ZHANG Yue JIANG Jiang +3 位作者 YANG Kewei WANG Xingliang XU Chi LI Minghao 《Journal of Systems Engineering and Electronics》 2025年第1期139-154,共16页
Architecture framework has become an effective method recently to describe the system of systems(SoS)architecture,such as the United States(US)Department of Defense Architecture Framework Version 2.0(DoDAF2.0).As a vi... Architecture framework has become an effective method recently to describe the system of systems(SoS)architecture,such as the United States(US)Department of Defense Architecture Framework Version 2.0(DoDAF2.0).As a viewpoint in DoDAF2.0,the operational viewpoint(OV)describes operational activities,nodes,and resource flows.The OV models are important for SoS architecture development.However,as the SoS complexity increases,constructing OV models with traditional methods exposes shortcomings,such as inefficient data collection and low modeling standards.Therefore,we propose an intelligent modeling method for five OV models,including operational resource flow OV-2,organizational relationships OV-4,operational activity hierarchy OV-5a,operational activities model OV-5b,and operational activity sequences OV-6c.The main idea of the method is to extract OV architecture data from text and generate interoperable OV models.First,we construct the OV meta model based on the DoDAF2.0 meta model(DM2).Second,OV architecture named entities is recognized from text based on the bidirectional long short-term memory and conditional random field(BiLSTM-CRF)model.And OV architecture relationships are collected with relationship extraction rules.Finally,we define the generation rules for OV models and develop an OV modeling tool.We use unmanned surface vehicles(USV)swarm target defense SoS architecture as a case to verify the feasibility and effectiveness of the intelligent modeling method. 展开更多
关键词 system of systems(SoS)architecture operational viewpoint(OV)model meta model bidirectional long short-term memory and conditional random field(BiLSTM-CRF) model generation systems modeling language
在线阅读 下载PDF
基于BERT-BiLSTM-CRF模型的畜禽疫病文本分词研究 被引量:4
13
作者 余礼根 郭晓利 +3 位作者 赵红涛 杨淦 张俊 李奇峰 《农业机械学报》 EI CAS CSCD 北大核心 2024年第2期287-294,共8页
针对畜禽疫病文本语料匮乏、文本内包含大量疫病名称及短语等未登录词问题,提出了一种结合词典匹配的BERT-BiLSTM-CRF畜禽疫病文本分词模型。以羊疫病为研究对象,构建了常见疫病文本数据集,将其与通用语料PKU结合,利用BERT(Bidirectiona... 针对畜禽疫病文本语料匮乏、文本内包含大量疫病名称及短语等未登录词问题,提出了一种结合词典匹配的BERT-BiLSTM-CRF畜禽疫病文本分词模型。以羊疫病为研究对象,构建了常见疫病文本数据集,将其与通用语料PKU结合,利用BERT(Bidirectional encoder representation from transformers)预训练语言模型进行文本向量化表示;通过双向长短时记忆网络(Bidirectional long short-term memory network,BiLSTM)获取上下文语义特征;由条件随机场(Conditional random field,CRF)输出全局最优标签序列。基于此,在CRF层后加入畜禽疫病领域词典进行分词匹配修正,减少在分词过程中出现的疫病名称及短语等造成的歧义切分,进一步提高了分词准确率。实验结果表明,结合词典匹配的BERT-BiLSTM-CRF模型在羊常见疫病文本数据集上的F1值为96.38%,与jieba分词器、BiLSTM-Softmax模型、BiLSTM-CRF模型、未结合词典匹配的本文模型相比,分别提升11.01、10.62、8.3、0.72个百分点,验证了方法的有效性。与单一语料相比,通用语料PKU和羊常见疫病文本数据集结合的混合语料,能够同时对畜禽疫病专业术语及疫病文本中常用词进行准确切分,在通用语料及疫病文本数据集上F1值都达到95%以上,具有较好的模型泛化能力。该方法可用于畜禽疫病文本分词。 展开更多
关键词 畜禽疫病 文本分词 预训练语言模型 双向长短时记忆网络 条件随机场
在线阅读 下载PDF
基于Wobert与对抗学习的中文命名实体识别 被引量:1
14
作者 倪渊 廖世豪 张健 《计算机工程》 CAS CSCD 北大核心 2024年第11期119-129,共11页
由于自然语言处理(NLP)将中文命名实体识别(NER)任务建模为序列标注任务,将文本中每个字符映射至一个标签,每个字符相对独立且信息有限,因此在NER领域词汇信息的加入能够解决字符间缺乏联系的问题。针对现有中文NER模型多需要额外构建... 由于自然语言处理(NLP)将中文命名实体识别(NER)任务建模为序列标注任务,将文本中每个字符映射至一个标签,每个字符相对独立且信息有限,因此在NER领域词汇信息的加入能够解决字符间缺乏联系的问题。针对现有中文NER模型多需要额外构建词汇表、提取词汇信息方式繁琐、词级嵌入与字级嵌入因来源不同导致信息难以融合的问题,提出一种基于Wobert与对抗学习的中文NER模型ALWAE-BiLSTM-CRF。与传统预训练模型相比,Wobert预训练模型在预训练阶段就已将文本分词,充分学习了词与字两个层次的信息,因此ALWAE-BiLSTM-CRF通过Wobert预训练模型获取字符词向量,再使用Wobert分词器获取预训练模型中已存在的词汇向量,接着使用BiLSTM模型获取两者的时序信息,随后通过多头注意力机制将词汇级别的信息要素融入字符词向量,同时通过对抗学习攻击生成对抗样本以增强模型泛化性,最后使用条件随机场(CRF)层对结果进行约束,获得最佳的预测序列。在Resume数据集与瓷器领域的自建数据集Porcelain上进行对比实验与消融实验,结果表明,ALWAE-BiLSTM-CRF模型的F1值分别达到97.21%与85.7%,证明了其在中文NER任务中的有效性。 展开更多
关键词 深度学习 命名实体识别 注意力机制 特征融合 条件随机场
在线阅读 下载PDF
基于命名实体识别的水电工程施工安全规范实体识别模型 被引量:1
15
作者 陈述 张超 +2 位作者 陈云 张光飞 李智 《中国安全科学学报》 CAS CSCD 北大核心 2024年第9期19-26,共8页
为准确识别水电工程施工安全规范实体,通过预训练模型中双向编码器表征法(BERT)挖掘文本中丰富的语义信息,利用双向长短期记忆神经网络(BILSTM)提取规范实体语义特征,依靠条件随机场(CRF)分析实体之间的依赖关系,构建水电工程施工安全... 为准确识别水电工程施工安全规范实体,通过预训练模型中双向编码器表征法(BERT)挖掘文本中丰富的语义信息,利用双向长短期记忆神经网络(BILSTM)提取规范实体语义特征,依靠条件随机场(CRF)分析实体之间的依赖关系,构建水电工程施工安全规范的命名实体识别模型;以《水利水电工程施工安全防护技术规范》(SL714—2015)为例,计算命名实体识别模型精确率。结果表明:BERT-BILSTM-CRF模型准确率为94.35%,相比于3种传统方法,准确率显著提高。研究成果有助于水电工程施工安全规范知识智能管理,为施工安全隐患智能判别提供支撑。 展开更多
关键词 命名实体识别 水电工程施工 安全规范 双向编码器表征法(BERT) 双向长短期记忆神经网络(BILSTM) 条件随机场(CRF)
在线阅读 下载PDF
融合词汇边界信息的合同实体识别方法 被引量:1
16
作者 王浩畅 和婷婷 郑冠彧 《计算机工程与设计》 北大核心 2024年第6期1757-1763,共7页
针对合同中实体表达形式复杂多变、识别粒度细的特点,及合同文本中实体较长问题,提出一种融合词汇边界信息的合同实体识别方法。利用预训练语言模型动态生成语义向量作为模型输入;运用相对位置编码对Transformer结构进行改进,使其在编... 针对合同中实体表达形式复杂多变、识别粒度细的特点,及合同文本中实体较长问题,提出一种融合词汇边界信息的合同实体识别方法。利用预训练语言模型动态生成语义向量作为模型输入;运用相对位置编码对Transformer结构进行改进,使其在编码过程中融合词汇信息,进一步丰富语义特征;通过条件随机场(CRF)结构进行解码,得到输入序列的标签预测。实验结果表明,该方法可以有效确定合同文本中的实体边界,具有良好的泛化性能。 展开更多
关键词 实体识别 合同文本 预训练语言模型 相对位置编码 转换器结构 词汇边界信息 条件随机场
在线阅读 下载PDF
基于改进DeeplabV3+的水面多类型漂浮物分割方法研究
17
作者 包学才 刘飞燕 +2 位作者 聂菊根 许小华 柯华盛 《水利水电技术(中英文)》 北大核心 2024年第4期163-175,共13页
【目的】为解决传统图像处理方法鲁棒性差、常用深度学习检测方法无法准确识别大片漂浮物的边界等问题,【方法】提出一种基于改进DeeplabV3+的水面多类型漂浮物识别的语义分割方法,提高水面漂浮的识别能力。对所收集实际水面漂浮物进行... 【目的】为解决传统图像处理方法鲁棒性差、常用深度学习检测方法无法准确识别大片漂浮物的边界等问题,【方法】提出一种基于改进DeeplabV3+的水面多类型漂浮物识别的语义分割方法,提高水面漂浮的识别能力。对所收集实际水面漂浮物进行分类,采用自制数据集进行对比试验。算法选择xception网络作为主干网络以获得初步漂浮物特征,在加强特征提取网络部分引入注意力机制以强调有效特征信息,在后处理阶段加入全连接条件随机场模型,将单个像素点的局部信息与全局语义信息融合。【结果】对比图像分割性能指标,改进后的算法mPA(Mean Pixel Accuracy)提升了5.73%,mIOU(Mean Intersection Over Union)提升了4.37%。【结论】相比于其他算法模型,改进后的DeeplabV3+算法对漂浮物特征的获取能力更强,同时能获得丰富的细节信息以更精准地识别多类型水面漂浮物的边界与较难分类的漂浮物,在对多个水库场景测试后满足实际水域环境中漂浮物检测的需求。 展开更多
关键词 深度学习 语义分割 特征提取 漂浮物识别 注意力机制 全连接条件随机场 算法模型 影响因素
在线阅读 下载PDF
融合多尺度CNN和CRF的通用细粒度事件检测
18
作者 任永功 阎格 何馨宇 《小型微型计算机系统》 CSCD 北大核心 2024年第4期859-864,共6页
事件检测是自然语言处理领域中事件抽取的主要任务之一,它旨在从众多非结构化信息中自动提取出结构化的关键信息.现有的方法存在特征提取不全面、特征分布不均等情况.为了提高事件检测的准确率,提出了一种融合BERT预训练模型与多尺度CN... 事件检测是自然语言处理领域中事件抽取的主要任务之一,它旨在从众多非结构化信息中自动提取出结构化的关键信息.现有的方法存在特征提取不全面、特征分布不均等情况.为了提高事件检测的准确率,提出了一种融合BERT预训练模型与多尺度CNN的神经网络模型(BMCC,BERT+Multi-scale CNN+CRF).首先通过BERT(Bidirectional Encoder Representations from Transformers)预训练模型来进行词向量的嵌入,并利用其双向训练的Transformer机制来提取序列的状态特征;其次使用不同尺度的卷积核在多个卷积通道中进行卷积训练,以此来提取不同视野的语义信息,丰富其语义表征.最后将BIO机制融入到条件随机场(CRF)来对序列进行标注,实现事件的检测.实验结果表明,所提出的模型在MAVEN数据集上的F1值为65.17%,表现了该模型的良好性能. 展开更多
关键词 事件检测 BERT 多尺度CNN 条件随机场(CRF) 交叉验证
在线阅读 下载PDF
基于多头注意力的中文电子病历命名实体识别 被引量:4
19
作者 肖丹 杨春明 +2 位作者 张晖 赵旭剑 李波 《计算机应用与软件》 北大核心 2024年第1期133-138,160,共7页
针对中文电子病历中复杂医疗实体的识别问题,提出一种联合特征与多头注意力相结合的实体识别方法。该方法使用字符、词性和词典组成的联合特征,利用BiLSTM和多头注意力分别提取句子的全局特征和局部特征,利用CRF结合所有特征完成实体标... 针对中文电子病历中复杂医疗实体的识别问题,提出一种联合特征与多头注意力相结合的实体识别方法。该方法使用字符、词性和词典组成的联合特征,利用BiLSTM和多头注意力分别提取句子的全局特征和局部特征,利用CRF结合所有特征完成实体标签的预测。实验结果表明,该方法F1值达89.16%,其中治疗和疾病两类实体分别达到94.76%和95.56%。 展开更多
关键词 命名实体识别 中文电子病历 多头注意力 长短期记忆网络 条件随机场
在线阅读 下载PDF
融合先验知识和字形特征的中文命名实体识别 被引量:1
20
作者 董永峰 白佳明 +1 位作者 王利琴 王旭 《计算机应用》 CSCD 北大核心 2024年第3期702-708,共7页
针对命名实体识别(NER)任务中相关模型通常仅对字符及相关词汇进行建模,未充分利用汉字特有的字形结构信息和实体类型信息的问题,提出一种融合先验知识和字形特征的命名实体识别模型。首先,采用结合高斯注意力机制的Transformer对输入... 针对命名实体识别(NER)任务中相关模型通常仅对字符及相关词汇进行建模,未充分利用汉字特有的字形结构信息和实体类型信息的问题,提出一种融合先验知识和字形特征的命名实体识别模型。首先,采用结合高斯注意力机制的Transformer对输入序列进行编码,并从中文维基百科中获取实体类型的中文释义,采用双向门控循环单元(BiGRU)编码实体类型信息作为先验知识,利用注意力机制将它与字符表示进行组合;其次,采用双向长短时记忆(BiLSTM)网络编码输入序列的远距离依赖关系,通过字形编码表获得繁体的仓颉码和简体的现代五笔码,采用卷积神经网络(CNN)提取字形特征表示,并根据不同权重组合繁体与简体字形特征,利用门控机制将它与经过BiLSTM编码后的字符表示进行组合;最后,使用条件随机场(CRF)解码,得到命名实体标注序列。在偏口语化的数据集Weibo、小型数据集Boson和大型数据集PeopleDaily上的实验结果表明,与基线模型MECT(Multi-metadata Embedding based Cross-Transformer)相比,所提模型的F1值别提高了2.47、1.20和0.98个百分点,验证了模型的有效性。 展开更多
关键词 命名实体识别 注意力机制 卷积神经网络 双向长短时记忆 条件随机场
在线阅读 下载PDF
上一页 1 2 31 下一页 到第
使用帮助 返回顶部