The elliptical cross-section ogive-nose projectile(ECOP) has recently attracted attention because it is well suited to the flattened shape of earth-penetrating weapons. However, the penetration performance of ECOPs ha...The elliptical cross-section ogive-nose projectile(ECOP) has recently attracted attention because it is well suited to the flattened shape of earth-penetrating weapons. However, the penetration performance of ECOPs has not been completely understood. The objective of this study was to investigate the penetration performance of ECOPs into concrete targets using a theoretical method. A general geometric model of ECOPs was introduced, and closed-form penetration equations were derived according to the dynamic cavity-expansion theory. The model was validated by comparing the predicted penetration depths with test data, and the maximum deviation was 15.8%. The increment in the penetration depth of the ECOP was evaluated using the proposed model, and the effect of the majoreminor axis ratio on the increment was examined. Additionally, the mechanism of the penetration-depth increment was investigated with respect to the caliber radius head, axial stress, and resistance.展开更多
This paper presents a computational study of the air flow past a triangular boattailed projectile.The study shows that there is a single normal shock wave impinges the projectile at transonic speeds.At supersonic spee...This paper presents a computational study of the air flow past a triangular boattailed projectile.The study shows that there is a single normal shock wave impinges the projectile at transonic speeds.At supersonic speeds,the formed shock waves are smeared compared to a conical boattailed projectile.Also,there is a reduction of the wake region behind the triangular base and the rear stagnation point is nearer to the projectile base resulting in base drag reduction.Moreover,there is an improvement of the stability of the triangular boattailed projectile since a lower overturning moment is incurred.展开更多
The aerodynamic characteristics of projectiles with triangular and circular cross sections are investigated respectively by use of free-flight experiment.Processed the experiment data,curves of flight velocity variati...The aerodynamic characteristics of projectiles with triangular and circular cross sections are investigated respectively by use of free-flight experiment.Processed the experiment data,curves of flight velocity variation and nutation of both projectiles are obtained,based on the curves,their aerodynamic force and moment coefficients are found out by data fitting,and their aerodynamic performances are compared and analyzed.Results show that the projectile with triangular cross section has smaller resistance,higher lift-drag ratio,better static stability,higher stability capability and more excellent maneuverability than those of the projectile with circular cross section,therefore it can be used in the guided projectiles;under lower rotation speed,the triangular section projectile has greater Magnus moment leading to bigger projectile distribution.展开更多
Analyzing the mass of behind-armor debris (BAD) generated by Rolled Homogeneous Armor (RHA) subjected to normal penetration of variable cross-section Explosively Formed Projectile (EFP) is the purpose of this paper. S...Analyzing the mass of behind-armor debris (BAD) generated by Rolled Homogeneous Armor (RHA) subjected to normal penetration of variable cross-section Explosively Formed Projectile (EFP) is the purpose of this paper. So theoretical analysis, numerical simulation and experimental data are combined to analyze the influence of variable cross-section characteristic on the time history of crater radius. Moreover the relationships between time history of crater radius (as well as mass of BAD) and the thickness of RHA (from 30mm to 70 mm) and the impact velocity of EFP (1650 m/s to 1860 m/s) are also investigated. The results indicate that: 1) being compared to the variable cross-section characteristic is ignored, the theoretical time history of crater radius is in better agreement with the simulation results when the variable cross-section characteristic is considered;2) being compared to the other three conditions of plug, the theoretical mass of BAD is in the best agreement with the simulation results when the shape of plug is frustum of a cone and the angle between generatrix and bottom is 45- and the axial length of mushroom is considered.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 11772269, 11802248, and 11872318)。
文摘The elliptical cross-section ogive-nose projectile(ECOP) has recently attracted attention because it is well suited to the flattened shape of earth-penetrating weapons. However, the penetration performance of ECOPs has not been completely understood. The objective of this study was to investigate the penetration performance of ECOPs into concrete targets using a theoretical method. A general geometric model of ECOPs was introduced, and closed-form penetration equations were derived according to the dynamic cavity-expansion theory. The model was validated by comparing the predicted penetration depths with test data, and the maximum deviation was 15.8%. The increment in the penetration depth of the ECOP was evaluated using the proposed model, and the effect of the majoreminor axis ratio on the increment was examined. Additionally, the mechanism of the penetration-depth increment was investigated with respect to the caliber radius head, axial stress, and resistance.
文摘This paper presents a computational study of the air flow past a triangular boattailed projectile.The study shows that there is a single normal shock wave impinges the projectile at transonic speeds.At supersonic speeds,the formed shock waves are smeared compared to a conical boattailed projectile.Also,there is a reduction of the wake region behind the triangular base and the rear stagnation point is nearer to the projectile base resulting in base drag reduction.Moreover,there is an improvement of the stability of the triangular boattailed projectile since a lower overturning moment is incurred.
基金Sponsored by Foundation of National Defense Key Laboratory
文摘The aerodynamic characteristics of projectiles with triangular and circular cross sections are investigated respectively by use of free-flight experiment.Processed the experiment data,curves of flight velocity variation and nutation of both projectiles are obtained,based on the curves,their aerodynamic force and moment coefficients are found out by data fitting,and their aerodynamic performances are compared and analyzed.Results show that the projectile with triangular cross section has smaller resistance,higher lift-drag ratio,better static stability,higher stability capability and more excellent maneuverability than those of the projectile with circular cross section,therefore it can be used in the guided projectiles;under lower rotation speed,the triangular section projectile has greater Magnus moment leading to bigger projectile distribution.
基金financially supported by the National Natural Science Foundation of China(Grant No.11372136)
文摘Analyzing the mass of behind-armor debris (BAD) generated by Rolled Homogeneous Armor (RHA) subjected to normal penetration of variable cross-section Explosively Formed Projectile (EFP) is the purpose of this paper. So theoretical analysis, numerical simulation and experimental data are combined to analyze the influence of variable cross-section characteristic on the time history of crater radius. Moreover the relationships between time history of crater radius (as well as mass of BAD) and the thickness of RHA (from 30mm to 70 mm) and the impact velocity of EFP (1650 m/s to 1860 m/s) are also investigated. The results indicate that: 1) being compared to the variable cross-section characteristic is ignored, the theoretical time history of crater radius is in better agreement with the simulation results when the variable cross-section characteristic is considered;2) being compared to the other three conditions of plug, the theoretical mass of BAD is in the best agreement with the simulation results when the shape of plug is frustum of a cone and the angle between generatrix and bottom is 45- and the axial length of mushroom is considered.