期刊文献+
共找到32篇文章
< 1 2 >
每页显示 20 50 100
基于时差的多输出tri-training异构软测量建模
1
作者 王大芬 唐莉丽 +3 位作者 张鑫焱 聂春雨 李明珠 吴菁 《化工学报》 北大核心 2025年第3期1143-1155,共13页
软测量技术为工业过程中重要变量及难测变量的预测提供了一个有效的解决办法。然而,由于工业过程的复杂化和高昂的数据获取成本,使得标记数据与未标记数据分布不平衡。此时,构建高性能的软测量模型成为一个挑战。针对这一问题,提出了一... 软测量技术为工业过程中重要变量及难测变量的预测提供了一个有效的解决办法。然而,由于工业过程的复杂化和高昂的数据获取成本,使得标记数据与未标记数据分布不平衡。此时,构建高性能的软测量模型成为一个挑战。针对这一问题,提出了一种基于时差的多输出tri-training异构软测量方法。通过构建一种新的tri-training框架,采用多输出的高斯过程回归(multi-output Gaussian process regression,MGPR)、相关向量机(multi-output relevance vector machine,MRVM)、最小二乘支持向量机(multi-output least squares support vector machine,MLSSVM)三种模型作为基线监督回归器,使用标记数据进行训练和迭代;同时,引入时间差分(time difference,TD)改进模型的动态特性,并通过卡尔曼滤波(Kalman filtering,KF)优化模型的参数,提高其预测性能;最后通过模拟污水处理平台(benchmark simulation model 1,BSM1)和实际污水处理厂对该模型进行了验证。结果表明,与传统的软测量建模方法相比,该模型能显著提高数据分布不平衡下软测量模型的自适应性和预测性能。 展开更多
关键词 tri-training 软测量 时间差分 协同训练 集成 预测 过程控制
在线阅读 下载PDF
基于密度峰值聚类的Tri-training算法
2
作者 罗宇航 吴润秀 +3 位作者 崔志华 张翼英 何业慎 赵嘉 《系统仿真学报》 CAS CSCD 北大核心 2024年第5期1189-1198,共10页
Tri-training利用无标签数据进行分类可有效提高分类器的泛化能力,但其易将无标签数据误标,从而形成训练噪声。提出一种基于密度峰值聚类的Tri-training(Tri-training with density peaks clustering,DPC-TT)算法。密度峰值聚类通过类... Tri-training利用无标签数据进行分类可有效提高分类器的泛化能力,但其易将无标签数据误标,从而形成训练噪声。提出一种基于密度峰值聚类的Tri-training(Tri-training with density peaks clustering,DPC-TT)算法。密度峰值聚类通过类簇中心和局部密度可选出数据空间结构表现较好的样本。DPC-TT算法采用密度峰值聚类算法获取训练数据的类簇中心和样本的局部密度,对类簇中心的截断距离范围内的样本认定为空间结构表现较好,标记为核心数据,使用核心数据更新分类器,可降低迭代过程中的训练噪声,进而提高分类器的性能。实验结果表明:相比于标准Tritraining算法及其改进算法,DPC-TT算法具有更好的分类性能。 展开更多
关键词 tri-training 半监督学习 密度峰值聚类 空间结构 分类器
在线阅读 下载PDF
基于Tri-training的社交媒体药物不良反应实体抽取
3
作者 何忠玻 严馨 +2 位作者 徐广义 张金鹏 邓忠莹 《计算机工程与应用》 CSCD 北大核心 2024年第3期177-186,共10页
社交媒体因其数据的实时性,对其充分利用可以弥补传统医疗文献药物不良反应中实体抽取的迟滞性问题,但社交媒体文本面临标注数据成本高、数据噪声大等问题,使得模型难以发挥良好的效果。针对社交媒体大量未标注语料存在标注成本高的问题... 社交媒体因其数据的实时性,对其充分利用可以弥补传统医疗文献药物不良反应中实体抽取的迟滞性问题,但社交媒体文本面临标注数据成本高、数据噪声大等问题,使得模型难以发挥良好的效果。针对社交媒体大量未标注语料存在标注成本高的问题,采用Tri-training半监督的方法进行社交媒体药物不良反应实体抽取,通过三个学习器Transformer+CRF、BiLSTM+CRF和IDCNN+CRF对未标注数据进行标注,再利用一致性评价函数迭代地扩展训练集,最后通过加权投票整合模型输出标签。针对社交媒体的文本不正式性(口语化严重、错别字等)问题,通过融合字与词两个粒度的向量作为整个模型嵌入层的输入,来提取更丰富的语义信息。实验结果表明,提出的模型在“好大夫在线”网站获取的数据集上取得了良好表现。 展开更多
关键词 中文社交媒体 药物不良反应 实体抽取 半监督学习 tri-training
在线阅读 下载PDF
基于Tri-training GPR的半监督软测量建模方法
4
作者 马君霞 李林涛 熊伟丽 《化工学报》 EI CSCD 北大核心 2024年第7期2613-2623,共11页
集成学习因通过构建并结合多个学习器,常获得比单一学习器显著优越的泛化能力。但是在标记数据比例较少时,建立高性能的集成学习软测量模型依然是个挑战。针对这一个问题,提出一种基于半监督集成学习的软测量建模方法——Tri-training ... 集成学习因通过构建并结合多个学习器,常获得比单一学习器显著优越的泛化能力。但是在标记数据比例较少时,建立高性能的集成学习软测量模型依然是个挑战。针对这一个问题,提出一种基于半监督集成学习的软测量建模方法——Tri-training GPR模型。该建模策略充分发挥了半监督学习的优势,减轻建模过程对标记样本数据的需求,在低数据标签率下,仍能通过对无标记数据进行筛选从而扩充可用于建模的有标记样本数据集,并进一步结合半监督学习和集成学习的优势,提出一种新的选择高置信度样本的思路。将所提方法应用于青霉素发酵和脱丁烷塔过程,建立青霉素和丁烷浓度预测软测量模型,与传统的建模方法相比获得了更优的预测结果,验证了模型的有效性。 展开更多
关键词 软测量 集成学习 半监督学习 tri-training 高斯过程回归 过程控制 动力学模型 化学过程
在线阅读 下载PDF
基于特征选择与改进的Tri-training的半监督网络流量分类 被引量:1
5
作者 李道全 祝圣凯 +1 位作者 翟豫阳 胡一帆 《计算机工程与应用》 CSCD 北大核心 2024年第23期275-285,共11页
网络流量分类对网络管理意义重大,目前基于机器学习的流量分类方法存在标注瓶颈、样本不平衡的问题。针对这两个问题,提出一种基于特征选择与改进的Tri-training算法结合的半监督网络流量分类模型。根据最大信息系数、皮尔逊系数选择出... 网络流量分类对网络管理意义重大,目前基于机器学习的流量分类方法存在标注瓶颈、样本不平衡的问题。针对这两个问题,提出一种基于特征选择与改进的Tri-training算法结合的半监督网络流量分类模型。根据最大信息系数、皮尔逊系数选择出与类高度相关但彼此不相关的特征,利用改进的Relief F选择出有利于少数类分类的特征,并将选择出的特征组合成最优特征子集缓解不平衡数据对分类的影响。结合集成思想,优化迭代和加权决策改进传统Tri-training算法,利用改进的Tri-training算法解决标注瓶颈问题。在Moore数据集上进行了实验,实验结果表明提出的方法在利用不平衡的少量有标记的数据下在F-measure上达到了95.26%,与先进的机器学习算法和原始Tri-training方法及其一些改进算法相比具有更好的分类性能。 展开更多
关键词 半监督网络 类不平衡 网络流量分类 特征选择 tri-training
在线阅读 下载PDF
基于Tri-Training和数据剪辑的半监督聚类算法 被引量:30
6
作者 邓超 郭茂祖 《软件学报》 EI CSCD 北大核心 2008年第3期663-673,共11页
提出一种半监督聚类算法,该算法在用seeds集初始化聚类中心前,利用半监督分类方法Tri-training的迭代训练过程对无标记数据进行标记,并加入seeds集以扩大规模;同时,在Tri-training训练过程中结合基于最近邻规则的Depuration数据剪辑技术... 提出一种半监督聚类算法,该算法在用seeds集初始化聚类中心前,利用半监督分类方法Tri-training的迭代训练过程对无标记数据进行标记,并加入seeds集以扩大规模;同时,在Tri-training训练过程中结合基于最近邻规则的Depuration数据剪辑技术对seeds集扩大过程中产生的误标记噪声数据进行修正、净化,以提高seeds集质量.实验结果表明,所提出的基于Tri-training和数据剪辑的DE-Tri-training半监督聚类新算法能够有效改善seeds集对聚类中心的初始化效果,提高聚类性能. 展开更多
关键词 半监督聚类 半监督分类 K-均值 seeds集 tri-training Depuration数据剪辑
在线阅读 下载PDF
基于自适应数据剪辑策略的Tri-training算法 被引量:15
7
作者 邓超 郭茂祖 《计算机学报》 EI CSCD 北大核心 2007年第8期1213-1226,共14页
Tri-training能有效利用无标记样例提高泛化能力.针对Tri-training迭代中无标记样例常被错误标记而形成训练集噪声,导致性能不稳定的缺点,文中提出ADE-Tri-training(Tri-training with Adaptive Data Editing)新算法.它不仅利用Remove O... Tri-training能有效利用无标记样例提高泛化能力.针对Tri-training迭代中无标记样例常被错误标记而形成训练集噪声,导致性能不稳定的缺点,文中提出ADE-Tri-training(Tri-training with Adaptive Data Editing)新算法.它不仅利用Remove Only剪辑操作对每次迭代可能产生的误标记样例识别并移除,更重要的是采用自适应策略来确定Remove Only触发与抑制的恰当时机.文中证明,PAC理论下自适应策略中一系列判别充分条件可同时确保新训练集规模迭代增大和新假设分类错误率迭代降低更多.UCI数据集上实验结果表明:ADE-Tri-training具有更好的分类泛化性能和健壮性. 展开更多
关键词 半监督学习 数据剪辑 自适应策略 PAC可学习 tri-training
在线阅读 下载PDF
基于Tri-training半监督学习的JPEG隐密分析方法 被引量:3
8
作者 郭艳卿 孔祥维 +1 位作者 尤新刚 何德全 《通信学报》 EI CSCD 北大核心 2008年第10期205-209,214,共6页
提出了一种基于半监督学习机制的JPEG隐密分析方法。通过三类DCT域统计特征和多超球面OC-SVM算法构建三种独立的隐密分析方法,并以Tri-training学习方式迭代地对未标记图像样本进行标记,来扩充原训练样本集,进而可以利用大量未标记属性... 提出了一种基于半监督学习机制的JPEG隐密分析方法。通过三类DCT域统计特征和多超球面OC-SVM算法构建三种独立的隐密分析方法,并以Tri-training学习方式迭代地对未标记图像样本进行标记,来扩充原训练样本集,进而可以利用大量未标记属性的图像样本提高隐密分析算法的泛化能力。由JSteg、F5、Outguess、MB1含密图像与载体图像所组成的混合图像库上的仿真实验结果验证了此方法的有效性。 展开更多
关键词 隐密分析 半监督学习 tri-training 多超球面 一类支持向量机
在线阅读 下载PDF
基于Tri-training的半监督多标记学习算法 被引量:4
9
作者 刘杨磊 梁吉业 +1 位作者 高嘉伟 杨静 《智能系统学报》 CSCD 北大核心 2013年第5期439-445,共7页
传统的多标记学习是监督意义下的学习,它要求获得完整的类别标记.但是当数据规模较大且类别数目较多时,获得完整类别标记的训练样本集是非常困难的.因而,在半监督协同训练思想的框架下,提出了基于Tri-training的半监督多标记学习算法(SM... 传统的多标记学习是监督意义下的学习,它要求获得完整的类别标记.但是当数据规模较大且类别数目较多时,获得完整类别标记的训练样本集是非常困难的.因而,在半监督协同训练思想的框架下,提出了基于Tri-training的半监督多标记学习算法(SMLT).在学习阶段,SMLT引入一个虚拟类标记,然后针对每一对类别标记,利用协同训练机制Tri-training算法训练得到对应的分类器;在预测阶段,给定一个新的样本,将其代入上述所得的分类器中,根据类别标记得票数的多少将多标记学习问题转化为标记排序问题,并将虚拟类标记的得票数作为阈值对标记排序结果进行划分.在UCI中4个常用的多标记数据集上的对比实验表明,SMLT算法在4个评价指标上的性能大多优于其他对比算法,验证了该算法的有效性. 展开更多
关键词 多标记学习 半监督学习 tri-training
在线阅读 下载PDF
一种基于Tri-training的数据流集成分类算法 被引量:5
10
作者 胡学钢 马利伟 李培培 《数据采集与处理》 CSCD 北大核心 2017年第5期853-860,共8页
数据流分类是数据挖掘领域的重要研究任务之一,已有的数据流分类算法大多是在有标记数据集上进行训练,而实际应用领域数据流中有标记的数据数量极少。为解决这一问题,可通过人工标注的方式获取标记数据,但人工标注昂贵且耗时。考虑到未... 数据流分类是数据挖掘领域的重要研究任务之一,已有的数据流分类算法大多是在有标记数据集上进行训练,而实际应用领域数据流中有标记的数据数量极少。为解决这一问题,可通过人工标注的方式获取标记数据,但人工标注昂贵且耗时。考虑到未标记数据的数量极大且隐含大量信息,因此在保证精度的前提下,为利用这些未标记数据的信息,本文提出了一种基于Tri-training的数据流集成分类算法。该算法采用滑动窗口机制将数据流分块,在前k块含有未标记数据和标记数据的数据集上使用Tri-training训练基分类器,通过迭代的加权投票方式不断更新分类器直到所有未标记数据都被打上标记,并利用k个Tri-training集成模型对第k+1块数据进行预测,丢弃分类错误率高的分类器并在当前数据块上重建新分类器从而更新当前模型。在10个UCI数据集上的实验结果表明:与经典算法相比,本文提出的算法在含80%未标记数据的数据流上的分类精度有显著提高。 展开更多
关键词 数据流分类 tri-training 未标记数据 集成 加权投票
在线阅读 下载PDF
基于Tri-training与噪声过滤的弱监督关系抽取 被引量:2
11
作者 贾真 冶忠林 +1 位作者 尹红风 何大可 《中文信息学报》 CSCD 北大核心 2016年第4期142-149,158,共9页
弱监督关系抽取利用已有关系实体对从文本集中自动获取训练数据,有效解决了训练数据不足的问题。针对弱监督训练数据存在噪声、特征不足和不平衡,导致关系抽取性能不高的问题,文中提出NF-Tri-training(Tritraining with Noise Filtering... 弱监督关系抽取利用已有关系实体对从文本集中自动获取训练数据,有效解决了训练数据不足的问题。针对弱监督训练数据存在噪声、特征不足和不平衡,导致关系抽取性能不高的问题,文中提出NF-Tri-training(Tritraining with Noise Filtering)弱监督关系抽取算法。它利用欠采样解决样本不平衡问题,基于Tri-training从未标注数据中迭代学习新的样本,提高分类器的泛化能力,采用数据编辑技术识别并移除初始训练数据和每次迭代产生的错标样本。在互动百科采集数据集上实验结果表明NF-Tri-training算法能够有效提升关系分类器的性能。 展开更多
关键词 关系抽取 弱监督学习 tri-training 数据编辑
在线阅读 下载PDF
基于交叉熵的安全Tri-training算法 被引量:9
12
作者 张永 陈蓉蓉 张晶 《计算机研究与发展》 EI CSCD 北大核心 2021年第1期60-69,共10页
半监督学习方法通过少量标记数据和大量未标记数据来提升学习性能.Tri-training是一种经典的基于分歧的半监督学习方法,但在学习过程中可能产生标记噪声问题.为了减少Tri-training中的标记噪声对未标记数据的预测偏差,学习到更好的半监... 半监督学习方法通过少量标记数据和大量未标记数据来提升学习性能.Tri-training是一种经典的基于分歧的半监督学习方法,但在学习过程中可能产生标记噪声问题.为了减少Tri-training中的标记噪声对未标记数据的预测偏差,学习到更好的半监督分类模型,用交叉熵代替错误率以更好地反映模型预估结果和真实分布之间的差距,并结合凸优化方法来达到降低标记噪声的目的,保证模型效果.在此基础上,分别提出了一种基于交叉熵的Tri-training算法、一个安全的Tri-training算法,以及一种基于交叉熵的安全Tri-training算法.在UCI(University of California Irvine)机器学习库等基准数据集上验证了所提方法的有效性,并利用显著性检验从统计学的角度进一步验证了方法的性能.实验结果表明,提出的半监督学习方法在分类性能方面优于传统的Tri-training算法,其中基于交叉熵的安全Tri-training算法拥有更高的分类性能和泛化能力. 展开更多
关键词 半监督学习 tri-training算法 交叉熵 凸优化 样本标记
在线阅读 下载PDF
基于Tri-training算法的构造性学习方法 被引量:3
13
作者 吴涛 李萍 王允强 《计算机工程》 CAS CSCD 2012年第6期13-15,共3页
构造性机器学习(CML)算法在训练分类器时需要大量有标记样本,而获取这些有标记样本十分困难。为此,提出一种基于Tri-training算法的构造性学习方法。根据已标记的样本,采用不同策略构造3个差异较大的初始覆盖分类网络,用于对未标记数据... 构造性机器学习(CML)算法在训练分类器时需要大量有标记样本,而获取这些有标记样本十分困难。为此,提出一种基于Tri-training算法的构造性学习方法。根据已标记的样本,采用不同策略构造3个差异较大的初始覆盖分类网络,用于对未标记数据进行标记,再将已标记数据加入到训练样本中,调整各分类网络参数,反复进行上述过程,直至获得稳定的分类器。实验结果证明,与CML算法和基于NB分类器的半监督学习算法相比,该方法的分类准确率更高。 展开更多
关键词 半监督学习 构造性机器学习 tri-training算法 覆盖 分类网络
在线阅读 下载PDF
关系tri-training:利用无标记数据学习一阶规则 被引量:1
14
作者 李艳娟 郭茂祖 《计算机科学与探索》 CSCD 2012年第5期430-442,共13页
针对目前归纳逻辑程序设计(inductive logic programming,ILP)系统要求训练数据充分且无法利用无标记数据的不足,提出了一种利用无标记数据学习一阶规则的算法——关系tri-training(relational-tri-training,R-tri-training)算法。该算... 针对目前归纳逻辑程序设计(inductive logic programming,ILP)系统要求训练数据充分且无法利用无标记数据的不足,提出了一种利用无标记数据学习一阶规则的算法——关系tri-training(relational-tri-training,R-tri-training)算法。该算法将基于命题逻辑表示的半监督学习算法tri-training的思想引入到基于一阶逻辑表示的ILP系统,在ILP框架下研究如何利用无标记样例信息辅助分类器训练。R-tri-training算法首先根据标记数据和背景知识初始化三个不同的ILP系统,然后迭代地用无标记样例对三个分类器进行精化,即如果两个分类器对一个无标记样例的标记结果一致,则在一定条件下该样例将被标记给另一个分类器作为新的训练样例。标准数据集上实验结果表明:R-tri-training能有效地利用无标记数据提高学习性能,且R-tri-training算法性能优于GILP(genetic inductive logic programming)、NFOIL、KFOIL和ALEPH。 展开更多
关键词 机器学习 归纳逻辑程序设计(ILP) 关系tri-training 概率近似正确(PAC)可学习
在线阅读 下载PDF
基于垂直集成Tri-training的虚假评论检测模型 被引量:1
15
作者 尹春勇 朱宇航 《计算机应用》 CSCD 北大核心 2020年第8期2194-2201,共8页
针对虚假评论会误导用户的偏向并使其利益遭受损失以及大规模人工标注评论的代价过高等问题,通过利用以往迭代过程中生成的分类模型来提高检测的准确性,提出一种基于垂直集成的Tri-training(VETT)的虚假评论检测模型。该模型在评论文本... 针对虚假评论会误导用户的偏向并使其利益遭受损失以及大规模人工标注评论的代价过高等问题,通过利用以往迭代过程中生成的分类模型来提高检测的准确性,提出一种基于垂直集成的Tri-training(VETT)的虚假评论检测模型。该模型在评论文本特征的基础上结合用户行为特征作为特征进行提取。在VETT算法中,迭代过程被分成组内垂直集成和组间水平集成两部分:组内集成是利用分类器以往的迭代模型集成为一个原始分类器,而组间集成是利用3个原始分类器通过传统过程训练得到这一轮迭代后的二代分类器,以此来提高标签标记的准确率。对比Co-training、Tri-training、基于AUC优化的PU学习(PU-AUC)和基于垂直集成的Co-training(VECT)等算法,VETT算法的F1值分别最大提高了6.5、5.08、4.27和4.23个百分点。实验结果表明VETT算法有较好的分类性能。 展开更多
关键词 虚假评论 垂直集成 tri-training 迭代分类器 标签准确率
在线阅读 下载PDF
基于Tri-training的多特征融合图像检索
16
作者 陈秀新 郑雅 +1 位作者 于重重 贾克斌 《计算机应用研究》 CSCD 北大核心 2014年第11期3506-3509,共4页
为了有效地综合利用图像的多种底层特征进行图像检索,提出将Tri-training方法应用于图像检索过程,将图像的颜色、纹理和形状特征进行了有效的融合。分别提取图像的三维量化颜色直方图、方向可控金字塔二值图像投影和仿射不变区域来表示... 为了有效地综合利用图像的多种底层特征进行图像检索,提出将Tri-training方法应用于图像检索过程,将图像的颜色、纹理和形状特征进行了有效的融合。分别提取图像的三维量化颜色直方图、方向可控金字塔二值图像投影和仿射不变区域来表示其颜色、纹理和形状特征,并将三种特征的匹配值作为Tri-training分类器的输入对分类器进行训练和测试。实验结果表明,该方法有效利用了图像的多种特征,达到了很好的检索效果。 展开更多
关键词 tri-training 三维量化颜色直方图 方向可控金字塔 仿射不变区域 多特征融合 图像检索
在线阅读 下载PDF
基于Tri-training的评价单元识别 被引量:4
17
作者 蒋润 顾春华 阮彤 《计算机应用》 CSCD 北大核心 2014年第4期1099-1104,共6页
评价单元的识别是情感倾向性分析中重要的一步,但由于标注语料匮乏,大多数研究集中在用人工构建规则、模板来识别评价单元的方法上。为了减轻标注训练语料的工作,同时进一步挖掘未标记样本的信息,提出一种基于协同训练机制的评价单元识... 评价单元的识别是情感倾向性分析中重要的一步,但由于标注语料匮乏,大多数研究集中在用人工构建规则、模板来识别评价单元的方法上。为了减轻标注训练语料的工作,同时进一步挖掘未标记样本的信息,提出一种基于协同训练机制的评价单元识别算法,以利用少量的已标记样本和大量的未标记样本来提高识别性能。该算法利用Tri-training的思想,将支持向量机(SVM)、最大熵(MaxEnt)以及条件随机场(CRF)三个不同分类器组合成一个分类体系,对生成的评价单元候选集进行分类。将Tri-training的算法思想应用于实验来对比采用单一分类器的方法,结果表明,该算法能够有效地识别主观句中的评价单元。 展开更多
关键词 半监督学习 协同训练 tri-training 评价单元 依存分析 评价对象
在线阅读 下载PDF
基于Tri-Training的制冷系统半监督故障诊断 被引量:2
18
作者 任正雄 韩华 +2 位作者 崔晓钰 陆海龙 张运乾 《制冷学报》 CAS CSCD 北大核心 2022年第4期129-136,144,共9页
针对以往制冷系统故障诊断需采用已知运行状态的有标签数据,导致大量无标签数据信息无法利用的问题,本文提出一种基于Tri-Training的制冷系统半监督故障诊断方法,改善制冷系统故障诊断性能。采用一台316 kW离心式冷水机组7类典型故障的... 针对以往制冷系统故障诊断需采用已知运行状态的有标签数据,导致大量无标签数据信息无法利用的问题,本文提出一种基于Tri-Training的制冷系统半监督故障诊断方法,改善制冷系统故障诊断性能。采用一台316 kW离心式冷水机组7类典型故障的实际数据对该诊断方法进行验证,结果表明:该方法具有有效性,挖掘无标签数据信息的Tri-Training半监督故障诊断模型相比支持向量机(SVM)、K近邻(KNN)、随机森林(RF)3种有监督诊断模型,性能显著提高,总体诊断正确率达到99.43%,对系统级故障的诊断正确率提升1.73%~3.90%,虚警率、漏报率、误报率均有不同程度改善。同时,表明该故障诊断模型中3个基分类器的故障诊断性能及其多样性是影响该模型对制冷系统中无标签数据利用的主要因素。 展开更多
关键词 制冷系统 故障诊断 半监督学习 tri-training 优化
在线阅读 下载PDF
基于Tri-training MPLS的半监督软测量模型 被引量:3
19
作者 李东 刘乙奇 黄道平 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第2期217-224,共8页
随着污水处理过程日趋复杂,易测量变量和难测量变量的比例严重失衡,传统的监督性软测量建模方法已经无法满足需求。针对这一问题,提出了一种新的半监督学习的软测量模型-Tri-training MPLS模型。首先将标记数据均分为相互独立的3个部分... 随着污水处理过程日趋复杂,易测量变量和难测量变量的比例严重失衡,传统的监督性软测量建模方法已经无法满足需求。针对这一问题,提出了一种新的半监督学习的软测量模型-Tri-training MPLS模型。首先将标记数据均分为相互独立的3个部分,并由这3个相互独立的标记样本子集选择置信度高的未标记样本训练模型,提高模型的预测能力。其次,将单输出软测量模型升级为多输出模型,对多个输出的变量直接建模预测。最后,通过污水处理仿真模型BSM1(Benchmark Simulation Model-1)平台对本文模型进行验证。结果表明,该软测量模型不仅具有较好的多输出预测能力,而且对单个预测结果也有令人满意的预测表现。 展开更多
关键词 软测量 半监督学习 多输出 tri-training 偏最小二乘
在线阅读 下载PDF
基于LPA和Tri-Training的半监督文本倾向性分类 被引量:1
20
作者 郭毅 黄磊 《北京交通大学学报》 CAS CSCD 北大核心 2015年第6期114-121,共8页
提出了一种基于LPA和Tri-Training算法的半监督文本倾向性分类框架.通过LPA对初始样本进行快速分类,获得更多可信的有标签数据,优化分类框架的训练过程.引入Tri-Training算法,提高分类框架的泛化能力和可用性.实验结果表明,在不同标注... 提出了一种基于LPA和Tri-Training算法的半监督文本倾向性分类框架.通过LPA对初始样本进行快速分类,获得更多可信的有标签数据,优化分类框架的训练过程.引入Tri-Training算法,提高分类框架的泛化能力和可用性.实验结果表明,在不同标注比例的样本集上,该框架都有较好的分类性能,相较有监督学习算法和单一的半监督算法提高了分类精度,并有较强的鲁棒性,为解决有标签样本比例较少情况下的文本倾向性分类提供了一个新的思路. 展开更多
关键词 半监督学习 LIT2 文本倾向性分类 tri-training算法 标签传播算法
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部