期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Nonlinear amplitude versus angle inversion for transversely isotropic media with vertical symmetry axis using new weak anisotropy approximation equations 被引量:6
1
作者 Lin Zhou Zhuo-Chao Chen +3 位作者 Jing-Ye Li Xiao-Hong Chen Xing-Ye Liu Jian-Ping Liao 《Petroleum Science》 SCIE CAS CSCD 2020年第3期628-644,共17页
In VTI media,the conventional inversion methods based on the existing approximation formulas are difficult to accurately estimate the anisotropic parameters of reservoirs,even more so for unconventional reservoirs wit... In VTI media,the conventional inversion methods based on the existing approximation formulas are difficult to accurately estimate the anisotropic parameters of reservoirs,even more so for unconventional reservoirs with strong seismic anisotropy.Theoretically,the above problems can be solved by utilizing the exact reflection coefficients equations.However,their complicated expression increases the difficulty in calculating the Jacobian matrix when applying them to the Bayesian deterministic inversion.Therefore,the new reduced approximation equations starting from the exact equations are derived here by linearizing the slowness expressions.The relatively simple form and satisfactory calculation accuracy make the reduced equations easy to apply for inversion while ensuring the accuracy of the inversion results.In addition,the blockiness constraint,which follows the differentiable Laplace distribution,is added to the prior model to improve contrasts between layers.Then,the concept of GLI and an iterative reweighted least-squares algorithm is combined to solve the objective function.Lastly,we obtain the iterative solution expression of the elastic parameters and anisotropy parameters and achieve nonlinear AVA inversion based on the reduced equations.The test results of synthetic data and field data show that the proposed method can accurately obtain the VTI parameters from prestack AVA seismic data. 展开更多
关键词 transversely isotropic media with vertical symmetry axis(VTI) New reduced approximation equations Differentiable Laplace distribution Blockiness constraint
在线阅读 下载PDF
Poroelastodynamic responses and elastic moduli of a transversely isotropic porous cylinder under forced deformation test
2
作者 Chao Liu Dung T.Phan 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第7期793-800,共8页
Existing transversely isotropic poroelastodynamics solutions are limited to infinite domains and without experimental validation. Furthermore, there is a lack of analytical simulations for the elastic moduli dispersio... Existing transversely isotropic poroelastodynamics solutions are limited to infinite domains and without experimental validation. Furthermore, there is a lack of analytical simulations for the elastic moduli dispersion of fluid-saturated porous cylinders. To address these three limitations and investigate the mechanisms of moduli dispersion, we present the analytical solutions of the poromechanical responses and the elastic moduli dispersion of a transversely isotropic, fluid-saturated, finite porous cylinder subjected to a forced deformation test. Through an example, we demonstrate the effects of loading frequency, boundary conditions, and material's anisotropy, dimension, and permeability on the responses of pore pressure,force, displacement, and dynamic elastic moduli of the cylinder. The specimen's responses are significantly influenced by the frequency of the applied load, resulting in a drained state at low frequencies and an undrained state at high frequencies. At high frequencies, the sample behaves identically for an open or a closed lateral boundary, and permeability has insignificant effects. The dynamic elastic moduli are mainly controlled by the loading frequency and the ratio of the sample's radius to its height. Lastly,we show excellent matches between the newly derived analytical solution and laboratory measurements on one clay and two shale samples from Mont Terri. 展开更多
关键词 Poroelastodynamics Dynamic moduli transversely isotropic Porous cylinder Forced deformation test
在线阅读 下载PDF
Solving elastic wave equations in 2D transversely isotropic media by a weighted Runge-Kutta discontinuous Galerkin method
3
作者 Xi-Jun He Jing-Shuang Li +1 位作者 Xue-Yuan Huang Yan-Jie Zhou 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期827-839,共13页
Accurate wave propagation simulation in anisotropic media is important for forward modeling, migration and inversion. In this study, the weighted Runge-Kutta discontinuous Galerkin (RKDG) method is extended to solve t... Accurate wave propagation simulation in anisotropic media is important for forward modeling, migration and inversion. In this study, the weighted Runge-Kutta discontinuous Galerkin (RKDG) method is extended to solve the elastic wave equations in 2D transversely isotropic media. The spatial discretization is based on the numerical flux discontinuous Galerkin scheme. An explicit weighted two-step iterative Runge-Kutta method is used as time-stepping algorithm. The weighted RKDG method has good flexibility and applicability of dealing with undulating geometries and boundary conditions. To verify the correctness and effectiveness of this method, several numerical examples are presented for elastic wave propagations in vertical transversely isotropic and tilted transversely isotropic media. The results show that the weighted RKDG method is promising for solving wave propagation problems in complex anisotropic medium. 展开更多
关键词 Discontinuous Galerkin method ANISOTROPY transversely isotropic MODELING
在线阅读 下载PDF
Three-Dimensional Thermal-Stress Analysis of Semi-infinite Transversely Isotropic Composites
4
作者 TOKOVYY Yuriy BOIKO Dmytro GAO Cunfa 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第1期18-28,共11页
By making use of the direct integration method,an exact analysis of the general three-dimensional thermoelasticity problem is performed for the case of a transversely isotropic homogeneous half-space subject to local ... By making use of the direct integration method,an exact analysis of the general three-dimensional thermoelasticity problem is performed for the case of a transversely isotropic homogeneous half-space subject to local thermal and force loadings.The material plane of isotropy is assumed to be parallel to the limiting surface of the halfspace.By reducing the original thermoelasticity equations to the governing ones for individual stress-tensor components,the effect of material anisotropy in the stress field is analyzed with regard to the feasibility requirement,i.e.,the finiteness of the stress field at a distance from the disturbed area.As a result,the solution is constructed in the form of explicit analytical dependencies on the force and thermal loadings for various kinds of transversely isotropic materials and agrees with the basic principles of the continua mechanics.The solution can be efficiently used as a benchmark one for the direct computation of temperature and thermal stresses in transversely isotropic semi-infinite domains,as well as for the verification of solutions constructed by different means. 展开更多
关键词 three-dimensional problem analytical solution transversely isotropic composites semi-infinite model force and thermal loadings finite stress distributions
在线阅读 下载PDF
COPLANAR CRACKS IN A FINITE TRANSVERSELY ISOTROPIC ELASTIC SLAB UNDER ANTIPLANE SHEARL STRESSES
5
作者 洪怀忠 《Acta Mathematica Scientia》 SCIE CSCD 1993年第3期308-315,共8页
An antiplane crack problem concerning a pair of coplanar cracks in a finite transversely isotropic elastic slab is considered. Using Fourier integral transform together with singular integral equation which can be sol... An antiplane crack problem concerning a pair of coplanar cracks in a finite transversely isotropic elastic slab is considered. Using Fourier integral transform together with singular integral equation which can be solvel numerically by suing a collocation technique. Once the integral equation is solved, the relevant crack energy and stress intensity factors of the problem are given. The analysis present can be easily extended to include cases where there are two or more pairs of coplanar cracks in the slab. 展开更多
关键词 exp COPLANAR CRACKS IN A FINITE transverseLY isotropic ELASTIC SLAB UNDER ANTIPLANE SHEARL STRESSES
在线阅读 下载PDF
TWO COPLANAR CRACKS IN A TRANSVERSELY ISOTROPIC ELASTIC SLAB SUBJECTED TO ANTIPLANE SHEAR STRESSES
6
作者 洪怀忠 《Acta Mathematica Scientia》 SCIE CSCD 1991年第1期32-38,共7页
The problem of a transversely isotropic elastic slab containing two coplanar cracks subjected to an antiplane deformation is considered. With the aid of an integral transform technique, we formulate the problem in ter... The problem of a transversely isotropic elastic slab containing two coplanar cracks subjected to an antiplane deformation is considered. With the aid of an integral transform technique, we formulate the problem in terms of a finite-part singular integral equation which can be solved numerically, Once the integral equation is solved, relevant quantities such as the crack energy can be readily computed. 展开更多
关键词 TWO COPLANAR CRACKS IN A transverseLY isotropic ELASTIC SLAB SUBJECTED TO ANTIPLANE SHEAR STRESSES
在线阅读 下载PDF
Systematic prediction of the gas content, fractures, and brittleness in fractured shale reservoirs with TTI medium
7
作者 Yun Zhao Xiao-Tao Wen +2 位作者 Chen-Long Li Yang Liu Chun-Lan Xie 《Petroleum Science》 SCIE EI CAS CSCD 2024年第5期3202-3221,共20页
The main objective is to optimize the development of shale gas-rich areas by predicting seismic sweet spot parameters in shale reservoirs. We systematically assessed the fracture development, fracture gas content, and... The main objective is to optimize the development of shale gas-rich areas by predicting seismic sweet spot parameters in shale reservoirs. We systematically assessed the fracture development, fracture gas content, and rock brittleness in fractured gas-bearing shale reservoirs. To better characterize gas-bearing shale reservoirs with tilted fractures, we optimized the petrophysical modeling based on the equivalent medium theory. Based on the advantages of shale petrophysical modeling, we not only considered the brittle mineral fraction but also the combined effect of shale porosity, gas saturation, and total organic carbon(TOC) when optimizing the brittleness index. Due to fractures generally functioning as essential channels for fluid storage and movement, fracture density and fracture fluid identification factors are critical geophysical parameters for fractured reservoir prediction. We defined a new fracture gas indication factor(GFI) to detect fracture-effective gas content. A new linear PP-wave reflection coefficient equation for a tilted transversely isotropic(TTI) medium was rederived, realizing the direct prediction of anisotropic fracture parameters and the isotropic elasticity parameters from offset vector tile(OVT)-domain seismic data. Synthetic seismic data experiments demonstrated that the inversion algorithm based on the L_P quasinorm sparsity constraint and the split-component inversion strategy exhibits high stability and noise resistance. Finally, we applied our new prediction method to evaluate fractured gas-bearing shale reservoirs in the Sichuan Basin of China, demonstrating its effectiveness. 展开更多
关键词 Petrophysical modeling Brittleness index Fracture gas indication factor(GFI) Tilted transversely isotropic(TTI) Fracture density
在线阅读 下载PDF
Hydraulic fracture initiation theory for a horizontal well in a coal seam 被引量:19
8
作者 Hou Bing Chen Mian +2 位作者 Wang Zheng Yuan Jianbo Liu Ming 《Petroleum Science》 SCIE CAS CSCD 2013年第2期219-225,共7页
A series of experiments were pertbrmed to determine rock mechanical parameters related to hydraulic fracturing of coal. The effect of confining pressure and pore pressure on the strength of coal was stt, died. Experim... A series of experiments were pertbrmed to determine rock mechanical parameters related to hydraulic fracturing of coal. The effect of confining pressure and pore pressure on the strength of coal was stt, died. Experimental results show that the coal seam in the study areas has a relatively low elastic modulus, high Poisson's ratio, high fragility and is easily broken and compressed. The coal seam is considered as a transversely isotropic medium, since the physical properties in the direction of bedding plane and orthogonal to the bedding plane vary markedly. Based on the generalized plane strain model, stress distribution for an arbitrarily orientated wellbore in the coal seam was determined. In a horizontal well, hydraulic fracturing was lbund to initiate in the coal seam mass due to tensile failure, or from cleats due to shear or tensile failure. For those coal seams with abundant natural cleats, hydraulic fracture initiation can be induced by any of these mechanisms. In this study, hydraulic fracture initiation criteria tbr a horizontal well in a coal seam were established. 展开更多
关键词 Hydraulic fracturing coal seam transversely isotropic fracture initiation CLEAT naturalfracture
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部