PiggyBac transposon has demonstrated its long-term and stable transposition on genomes of various species but lacking of the evidence on farm animal genomes. In this study, we constructed a piggyBac transposon marked ...PiggyBac transposon has demonstrated its long-term and stable transposition on genomes of various species but lacking of the evidence on farm animal genomes. In this study, we constructed a piggyBac transposon marked with enhanced green fluorescent protein (eGFP) and showed efficient transposition in porcine somatic cells and cloned embryos. Our results demonstrated that piggyBac transposase could efficiently catalyze transposition in porcine fetal fibroblast cells, as well as in embryos. PiggyBac transposition generated 18-fold more eGFP-positive cell colonies compared to pEGFP-C1 random insertion mutagenesis, but excessive transposase might affect the transfection rate. Also piggyBac mediated 4-fold more eGFP expression than random insertion in cells and 17-fold in cloned embryos at mRNA level. When the mutagenized cells were used for somatic cell nuclear transfer (SCNT), the cleavage rate and blastocyst rate of constructed embryos harboring piggyBac transposition had no difference with random insertion group. This study provides key information on the piggyBac transposon system as a tool for creating transgenic pigs.展开更多
将由家蚕核型多角体病毒IE-1基因启动子控制下的hGM-CSF基因克隆到p igA3GFP载体中,构建了家蚕转基因载体p igA3GFP[IE-GMCSF],利用压力渗透法和精子介导法将其与辅助质粒helper p igA3一起导入家蚕蚕卵,获得产生绿色荧光的家蚕,次代产...将由家蚕核型多角体病毒IE-1基因启动子控制下的hGM-CSF基因克隆到p igA3GFP载体中,构建了家蚕转基因载体p igA3GFP[IE-GMCSF],利用压力渗透法和精子介导法将其与辅助质粒helper p igA3一起导入家蚕蚕卵,获得产生绿色荧光的家蚕,次代产生荧光蚕的比例分别为0.17%,0.15%。将次代荧光蚕与正常蚕交配后代(G1)的荧光蚕个体再相互杂交,连续进行多代选育,获得了稳定遗传的转hGM-CSF基因家蚕品系。展开更多
基金Supported by the National Projects of Genetic Modified Organism Breeding Technology (2008ZX08006-002)the State Transgenic Research Programme of China (2008ZX08006-002)
文摘PiggyBac transposon has demonstrated its long-term and stable transposition on genomes of various species but lacking of the evidence on farm animal genomes. In this study, we constructed a piggyBac transposon marked with enhanced green fluorescent protein (eGFP) and showed efficient transposition in porcine somatic cells and cloned embryos. Our results demonstrated that piggyBac transposase could efficiently catalyze transposition in porcine fetal fibroblast cells, as well as in embryos. PiggyBac transposition generated 18-fold more eGFP-positive cell colonies compared to pEGFP-C1 random insertion mutagenesis, but excessive transposase might affect the transfection rate. Also piggyBac mediated 4-fold more eGFP expression than random insertion in cells and 17-fold in cloned embryos at mRNA level. When the mutagenized cells were used for somatic cell nuclear transfer (SCNT), the cleavage rate and blastocyst rate of constructed embryos harboring piggyBac transposition had no difference with random insertion group. This study provides key information on the piggyBac transposon system as a tool for creating transgenic pigs.
文摘将由家蚕核型多角体病毒IE-1基因启动子控制下的hGM-CSF基因克隆到p igA3GFP载体中,构建了家蚕转基因载体p igA3GFP[IE-GMCSF],利用压力渗透法和精子介导法将其与辅助质粒helper p igA3一起导入家蚕蚕卵,获得产生绿色荧光的家蚕,次代产生荧光蚕的比例分别为0.17%,0.15%。将次代荧光蚕与正常蚕交配后代(G1)的荧光蚕个体再相互杂交,连续进行多代选育,获得了稳定遗传的转hGM-CSF基因家蚕品系。