期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
The Dynamic Study on Transpiration Consumption of Black Locust Forest 被引量:2
1
作者 贺康宁 侯振宏 《Forestry Studies in China》 CAS 2001年第2期10-17,共8页
To know the annual water consumption of forest, it is necessary to acquire the annual transpiration value of stands. This paper is based on the data measured in the typical weather of the growth season, from 1998 to 2... To know the annual water consumption of forest, it is necessary to acquire the annual transpiration value of stands. This paper is based on the data measured in the typical weather of the growth season, from 1998 to 2000, with the LI 1600 Steady Porometer and the general weather information. The daily variation of transpiration in black locust forest ( Robinia pesudoacacia L.) is modeled by Penman Monteith equation. As a result of the model, a continuous daily transpiration in the growth season was calculated. The net radiation, intercepted by black locust forest canopy, was acquired from a semi empirical equation of measuring net radiation R n with the extinction coefficient k and leaf area index LAI . The canopy integral stomatic resistance is a mimesis with an empirical equation of measuring data. Compared with measuring data, the relative error of the modeled ones is less than 12% averagely. At last, the total transpiration of black locust forest during the period of 1998 and 2000 in the growth season of May to October, as an average transpiration of the different density stands, were 192 46, 187 07 and 195 59?mm respectively. 展开更多
关键词 black locust transpiration net radiation leaf area index extinction coefficient stomatic resistance water consumption
在线阅读 下载PDF
The Response of Transpiration Rate of Malus pumila cv.Goldspur to Illumination and Soil Moisture 被引量:1
2
作者 王克勤 杨晓晖 《Forestry Studies in China》 CAS 2001年第2期18-25,共8页
We tested the transpiration rate ( Tr ) of seven\|year\|old field and two\|year\|old potted Malus pumila cv.Goldspur under different conditions of illumination and soil water. The results showed that the interre... We tested the transpiration rate ( Tr ) of seven\|year\|old field and two\|year\|old potted Malus pumila cv.Goldspur under different conditions of illumination and soil water. The results showed that the interrelationship between Tr of Malus pumila cv.Goldspur and illumination and soil water content ( SWC ) was quite remarkable. Tr increased with the increase of light intensity and SWC . However, when one of the environmental stresses of illumination and water existed, the improvement of the other condition couldn't make Tr rise greatly. Only when SWC was higher than 11%, which arrived at over 55% of the field content ( FC ), or the photosynthetic active radiation ( PAR ) higher than 400?μmol·s -1 m -2 , Tr could rise greatly with the increase of PAR or SWC . But when SWC was higher than 15%, which reached over 75% of FC or PAR higher than 1?000?μmol·s -1 ·m -2 , Tr would not change a lot with the change of PAR or SWC . That PAR and SWC influenced the magnitude of stomatic resistance( RS ) and leaf water potential ( Ψ l) was the basic reason for the Tr responded to them. Light stress reduced the open degree of stomas, so when severe light stress existed ( PAR <100?μmol·s -1 ·m -2 ), RS was larger ( RS >2 0?s·cm -1 ), which led to the decrease of Tr(Tr <5?μgH 2O·s -1 ·cm -2 ). When severe water stress existed( SWC <11% and<55% of FC and soil water potential Ψ ws <-1 15?MPa), RS was higher than 4 00?s·cm -1 and Ψ l lower than -2 10?MPa, which led to Tr lower than 11?μgH 2O·s -1 ·cm -2 . When soil water was adequate( SWC >15% amd over 75% of FC , and Ψ ws >-0 50?MPa), RS was lower than 2 00?s·cm -1 , Ψ l higher than -1 65?MPa and Tr would be higher than 15?μgH 2O·s -1 ·m -2 . The range of SWC , 11%~15%, which accounted for 55% to 75% of FC , and correspond RS (2 00~4 00?s·cm -1 ) were the turning area, where the variable curve of Tr transited from a variable trend to another variable one. It could be considered as the range to control soil water. 展开更多
关键词 transpiration rate irradiation intensity(photosynthetically active radiance) soil moisture
在线阅读 下载PDF
Transpiration surface reduction of Kousa Dogwood trees during serious water imbalance
3
作者 王斐 山本晴彦 《Journal of Forestry Research》 SCIE CAS CSCD 2009年第4期337-342,I0006,共7页
The response of Kousa dogwood (Cornus kousa Buerg.) to extreme stresses was investigated by RGB image analysis in the hot, dry and windy summer in 2007 in Yamaguch, Japan. Results show that tip and margin leaf scorc... The response of Kousa dogwood (Cornus kousa Buerg.) to extreme stresses was investigated by RGB image analysis in the hot, dry and windy summer in 2007 in Yamaguch, Japan. Results show that tip and margin leaf scorch was observed on many Kousa dogwood trees and clearly dark brown defense barrier appeared on scorched leaves. The defense barrier withdrew back from distal to proximal gradually until successful control of scorching, and left a series of unsuccessful defense traces. By responsive analysis of leaf color homogeneity with RGB image analysis method, a sharp logistic equation was obtained for the relative green/luminance (RGL) value of scorched leaves. By the meteorological analysis, the occurrence of dogwood leaf scorch-back was almost synchronous with the aridity peak period. It sug- gested that during the sudden aridity increment the extreme water stresses induce the defense response of Kousa dogwood tree to shear the excessive transpiration leaf area, and prevent the rest of the trees from further water loss. Image pixet analysis showed that 40.2% leaf area of sampled dogwood trees was reduced through the partial leaf scorch-back by the end of August in 2007. In contrast, only 13.2% leaf area was reduced from the same trees in 2008, for the reason of sufficient precipitation during first half year. In any case, the Kousa dogwood trees indeed reduced their transpiration surface area and appeared a surface reduction pattern differing from those shedding leaves or withering all the aboveground. Based on desiccation process analysis, it is considered that the interaction of the leaf dried back and the self-defense response was the key of the transpiration surface reduction (TSR) of Kousa dogwood during sudden hot and droughty stresses. 展开更多
关键词 aridity peak Kousa dogwood leaf scorch-back logistic responsive function relative G/L transpiration surface reduction
在线阅读 下载PDF
Nighttime transpiration of Populus euphratica during different phenophases 被引量:7
4
作者 Chunyan Zhao Jianhua Si +3 位作者 Qi Feng Tengfei Yu Peidu Li Michael A.Forster 《Journal of Forestry Research》 SCIE CAS CSCD 2019年第2期435-444,共10页
Evidence exists of nighttime transpiration and its potential impact on plant/water relations for species in a diversity of ecosystems. However, relevant data related to typical desert riparian forest species remains l... Evidence exists of nighttime transpiration and its potential impact on plant/water relations for species in a diversity of ecosystems. However, relevant data related to typical desert riparian forest species remains limited Accordingly, we measured sap flow velocity of Populus euphratica using the heat ratio method between 2012 and2014. Nocturnal stem sap flow was separated into nighttime and stem refilling using the ‘‘forecasted refilling''method. Nighttime transpiration was observed for each phenophase. The highest value was during the full foliation period but lowest during leaf expansion and defoliation periods. The contribution of nighttime transpiration to daytime transpiration was an average of 15% but this was comparatively higher during the defoliation period. Relationships between nighttime transpiration, vapor pressure deficits, and air temperatures were more closely associated than with wind speed in all phenophases. Moreover, we found that nighttime transpiration linearly correlated to vapour pressure deficit during the first and the full foliation periods, but nighttime transpiration showed exponential correlations to air temperatures during the same phenophases. Additionally, environmental drivers of transpiration were significantly different between nighttime and daytime(P \ 0.05). Driving forces behind nighttime transpiration were characterized by many factors, and integrated impacts between these multiple environmental factors were complex. Future studies should focus on these integrated impacts on nighttime transpiration, and the physiological mechanisms of nighttime transpiration should be investigated, given that this could also influence its occurrence and magnitude during different phenophases. 展开更多
关键词 SAP flow NIGHTTIME transpiration PHENOPHASE Heat ratio method POPULUS EUPHRATICA
在线阅读 下载PDF
Partitioning tree water usage into storage and transpiration in a mixed forest 被引量:5
5
作者 Ziqiang Liu Qianqian Liu +3 位作者 Zijun Wei Xinxiao Yu Guodong Jia Jiang Jiang 《Forest Ecosystems》 SCIE CSCD 2021年第4期961-973,共13页
Background:Water migration and use are important processes in trees.However,it is possible to overestimate transpiration by equating the water absorbed through the plant roots to that diffused back to the atmosphere t... Background:Water migration and use are important processes in trees.However,it is possible to overestimate transpiration by equating the water absorbed through the plant roots to that diffused back to the atmosphere through stomatal transpiration.Therefore,it is necessary to quantify the water transpired and stored in plants.Method:The δ^(2)H/δ^(18)O technique and heat ratio method were used to explore the water usage of coniferous and broad-leaved tree species,including the proportions of water used for transpiration and water storage.Results:Platycladus orientalis and Quercus variabilis had strong plasticity in their water usage from different sources.Platycladus orientalis primarily used groundwater(30.5%)and the 60-100-cm soil layer(21.6%)throughout the experimental period and was sensitive to precipitation,absorbing water from the 0-20-cm layer(26.6%)during the rainy season.Quercus variabilis absorbed water from all sources(15.7%-36.5%)except from the 40-60-cm soil layer during the dry season.In addition,it did not change its water source but increased its groundwater uptake during the rainy season.The annual mean water fluxes of P.orientalis and Q.variabilis were 374.69 and 469.50 mm·year−1,with 93.49% and 93.91% of the water used for transpiration,respectively.However,nocturnal sap flow in P.orientalis and Q.variabilis was mainly used for water storage in the trunk rather than transpiration,which effectively alleviated drought stress and facilitated the transport of nutrients.Conclusions:The water stored in both species comprised 6%-7% of the total water fluxes and,therefore,should be considered in water balance models. 展开更多
关键词 Water migration Water uptake Nocturnal sap flow transpiration
在线阅读 下载PDF
Impact of time lags on diurnal estimates of canopy transpiration and canopy conductance from sap-flow measurements of Populus cathayana in the Qinghai–Tibetan Plateau 被引量:3
6
作者 Hui Wang Kangning He +4 位作者 Runjie Li Zhuping Sheng Yun Tian Jun Wen Bo Chang 《Journal of Forestry Research》 SCIE CAS CSCD 2017年第3期481-490,共10页
Recently, canopy transpiration (Ec) has been often estimated by xylem sap-flow measurements. However, there is a significant time lag between sap flow measured at the base of the stem and canopy transpiration due to... Recently, canopy transpiration (Ec) has been often estimated by xylem sap-flow measurements. However, there is a significant time lag between sap flow measured at the base of the stem and canopy transpiration due to the capacitive exchange between the transpiration stream and stem water storage. Significant errors will be introduced in canopy conductance (gc) and canopy transpiration estimation if the time lag is neglected. In this study, a cross-correlation analysis was used to quantify the time lag, and the sap flowbased transpiration was measured to pararneterize Jarvistype models of gc and thus to simulate Ec of Populus cathayana using the Penman-Monteith equation. The results indicate that solar radiation (Rs) and vapor pressure deficit (VPD) are not fully coincident with sap flow and have an obvious lag effect; the sap flow lags behind Rs and precedes VPD, and there is a 1-h time shift between Eo and sap flow in the 30-min interval data set. A parameterized Jarvis-type gc model is suitable to predict P. cathayana transpiration and explains more than 80% of the variation observed in go, and the relative error was less than 25%, which shows a preferable simulation effect. The root mean square error (RMSEs) between the predicted and measured Ec were 1.91×10^-3 (with the time lag) and 3.12×10^-3cm h^-1 (without the time lag). More importantly, Ec simulation precision that incorporates time lag is improved by 6% compared to the results without the time lag, with the mean relative error (MRE) of only 8.32% and the mean absolute error (MAE) of 1.48 × 10^-3 cm h^-1. 展开更多
关键词 Canopy transpiration Model - Populuscathayana Qinghai-Tibetan Plateau Sap flow Time lags
在线阅读 下载PDF
Transpiration and growth responses by Eucalyptus species to progressive soil drying 被引量:1
7
作者 Marcel Carvalho Abreu Alvaro Augusto Vieira Soares +1 位作者 Cleverson Henrique de Freitas Fabrina Bolzan Martins 《Journal of Forestry Research》 SCIE CAS CSCD 2022年第5期1529-1543,共15页
The regulation of plant transpiration is a key factor affecting transpiration efficiency, growth and adaptation of Eucalyptus species to limited water availability in tropical and subtropical environments. However, fe... The regulation of plant transpiration is a key factor affecting transpiration efficiency, growth and adaptation of Eucalyptus species to limited water availability in tropical and subtropical environments. However, few studies have related this trait to the performance of Eucalyptus seedlings and none have investigated the influence of vapor pressure deficit (VPD) on transpiration rates and growth. In this study, the transpiration and growth responses of seedlings of Eucalyptus urophylla (S.T. Blake) and Eucalyptus cloeziana (F. Muell.) to progressive soil water deficits were evaluated under semi-controlled conditions using the fraction of transpirable soil water (FTSW) method. In addition, the influence of VPD on seedling transpiration, development and growth was also investigated. The FTSW threshold ranged from 0.40 to 0.99 for the transpiration rate and from 0.32 to 0.97 for the development and growth variables. Little or no changes in the FTSW threshold were detected in response to changes in atmospheric VPD. Both Eucalyptus species presented a conservation strategy under drought stress. In addition, water-conserving mechanisms during the seedling phase were related to rapid stomatal closure, reduced leaf area, and number of leaves. 展开更多
关键词 Soil water deficit Fraction of transpirable soil water transpiration Seedling growth Vapor pressure deficit
在线阅读 下载PDF
Effects of transpiration on unsteady MHD flow of an upper convected Maxwell (UCM) fluid passing through a stretching surface in the presence of a first order chemical reaction 被引量:1
8
作者 Swati Mukhopadhyay M.Golam Arif M.Wazed Ali Pk 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第12期315-322,共8页
The aim of this article is to present the effects of transpiration on the unsteady two-dimensional boundary layer flow of non-Newtonian fluid passing through a stretching sheet in the presence of a first order constru... The aim of this article is to present the effects of transpiration on the unsteady two-dimensional boundary layer flow of non-Newtonian fluid passing through a stretching sheet in the presence of a first order constructive/destructive chemical reaction. The upper-convected Maxwell (UCM) model is used here to characterize the non-Newtonian behavior of the fluid. Using similarity solutions, the governing nonlinear partial differential equations are transformed into ordinary ones and are then solved numerically by the shooting method. The flow fields and mass transfer are significantly influenced by the governing parameters. The fluid velocity initially decreases as the unsteadiness parameter increases and the concentration decreases significantly due to the increase in the unsteadiness. The effect of increasing values of transpiration (suction) and the Maxwell parameter is to suppress the velocity field; however, the concentration is enhanced as transpiration (suction) and the Maxwell parameter increase. Also, it is found that the fluid velocity decreases as the magnetic parameter increases; however, the concentration increases in this case. 展开更多
关键词 unsteady flow MHD upper convected Maxwell fluid stretching surface transpiration chemical reaction
在线阅读 下载PDF
Relationship between stomatal behavior and characteristics of photosynthesis and transpiration of Adenophora lobophylla and A. potaninii at different altitudes
9
作者 马书荣 阎秀峰 祖元刚 《Journal of Forestry Research》 SCIE CAS CSCD 1999年第4期229-232,共4页
The photosynthesis and transpiration characteristics of Adenophora lobophylla and A. potaninii as well as stomatal behavior such as stomatal size, stomatal density, stomatal open and stomatal conductivity were measure... The photosynthesis and transpiration characteristics of Adenophora lobophylla and A. potaninii as well as stomatal behavior such as stomatal size, stomatal density, stomatal open and stomatal conductivity were measured at different altitudes. The relationship between the photosynthesis and transpiration characteristics and the stomatal behavior was analysed by correlation coefficient and path coefficient analysis with altitude changes.The results showed that the inffuences of stomatal behavior were not evident on the photosynthesis and transpiration characteristics of A. Lobophylla, but evident on that of A. potaninii. 展开更多
关键词 ADENOPHORA lobophylla ADENOPHORA potaninii STOMATAL behavior PHOTOSYNTHESIS transpiration
在线阅读 下载PDF
Dominance-caused differences in transpiration of trees in a Karst broadleaved mixed forest
10
作者 Yanhui Liu Fangjun Ding +4 位作者 Deyuan Shu Wenjun Zhao Yingchun Chui Yiju Hou Peng Wu 《Journal of Forestry Research》 SCIE CAS CSCD 2020年第6期2083-2095,共13页
Estimating stand transpiration of natural forests using traditional methods through up-scaling of sap fl ux density from sample trees based on stand sapwood area only is diffi cult because of the complexity of species... Estimating stand transpiration of natural forests using traditional methods through up-scaling of sap fl ux density from sample trees based on stand sapwood area only is diffi cult because of the complexity of species,ages,and hierarchical structure of natural forests.To improve stand transpiration estimation,we developed an up-scaling method by considering the tree dominance eff ect based on the assumption that individual tree transpiration is aff ected by crown dominance and species,in addition to factors previously considered such as meteorological conditions,sapwood area,and soil moisture.In this study,the meteorological factors,soil moisture,and sap fl ux density of 15 sample trees of diff erent species and dominance in a natural evergreen and deciduous broadleaved mixed forest were simultaneously monitored from March 2012 to February 2014 in the Karst mountain region in southwestern China.After establishing a single tree transpiration model which considers the eff ects of dominance and species,an up-scaling method was explored to estimate stand transpiration.The results show that the transpiration intensity increased exponentially with increasing tree dominance.The contribution to annual stand transpiration from a few dominant trees(5.4%of trees, 28.2% of basal area) was up to 65.0%. The correspondingcontribution was 16.2% from sub-dominant trees(7.6% of trees, 16.2% of basal area) and 22.8% from middleandlower-layer trees (87.0% of trees, 55.6% of basal area).The variation of individual tree transpiration was mainly(97.9%) explained by tree dominance, but very weakly bytree species. The estimated annual stand transpiration was300.2 mm when using the newly developed method whichconsiders tree dominance, 52.5 mm (14.9%) lower than theestimation (352.7 mm) of traditional method which considersonly the sapwood area eff ect, and 8.5 mm (2.7%) lowerthan the estimation (308.6 mm) which considers the eff ectsof both species composition and sapwood area. The maintree characteristics aff ecting stand transpiration are tree size(sapwood area) and dominance. Consideration of tree dominancewill signifi cantly improve stand transpiration estimationand provide a more solid basis for guiding integratedforest-water management at stand scale. 展开更多
关键词 Karst broadleaved mixed forest Forest canopy layer Tree dominance Sap fl ow Tree transpiration Forest water use
在线阅读 下载PDF
Exact solutions for the flow of Casson fluid over a stretching surface with transpiration and heat transfer effects
11
作者 Swati Mukhopadhyay Krishnendu Bhattacharyya Tasawar Hayat 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第11期356-361,共6页
The effects of transpiration on forced convection boundary layer non-Newtonian fluid flow and heat transfer toward a linearly stretching surface are reported. The flow is caused solely by the stretching of the sheet i... The effects of transpiration on forced convection boundary layer non-Newtonian fluid flow and heat transfer toward a linearly stretching surface are reported. The flow is caused solely by the stretching of the sheet in its own plane with a velocity varying linearly with the distance from a fixed point. The constitutive relationship for the Casson fluid is used. The governing partial differential equations corresponding to the momentum and energy equations are converted into non-linear ordinary differential equations by using similarity transformations. Exact solutions of the resulting ordinary differential equations are obtained. The effect of increasing Casson parameter, i.e., with decreasing yield stress (the fluid behaves as a Newtonian fluid as the Casson parameter becomes large), is to suppress the velocity field. However, the temperature is enhanced as the Casson parameter increases. It is observed that the effect of transpiration is to decrease the fluid velocity as well as the temperature. The skin-friction coefficient is found to increase as the transpiration parameter increases. 展开更多
关键词 stretching surface transpiration Casson fluid heat transfer
在线阅读 下载PDF
Responses of the seedlings of five dominant tree species in Changbai Mountain to soil water stress 被引量:1
12
作者 代力民 李秋荣 +1 位作者 王淼 姬兰柱 《Journal of Forestry Research》 SCIE CAS CSCD 2003年第3期191-196,共6页
Soil water stress was studied on the potted seedlings of five dominant tree species (Pinus koraienes Sieb.et Zucc., Fraxinus mandshurica Rupr., Juglans mandshurica Maxim, Tilia amurensis Rupr. and Quercus mongolica Fi... Soil water stress was studied on the potted seedlings of five dominant tree species (Pinus koraienes Sieb.et Zucc., Fraxinus mandshurica Rupr., Juglans mandshurica Maxim, Tilia amurensis Rupr. and Quercus mongolica Fisch.ex Turcz) from the broadleaved/Korean pine forest in Changbai Mountain. Leaf growth, water transpiration and photosynthesis were compared for each species under three soil moisture conditions: 85%-100% (high water, CK), 65%-85% (Medium water, MW) and 45%-65% (low water, LW) of 37.4% water-holding capacity in field. The results showed that the characteristic of typical drought-resistance of the leaves is significantly developed. The net photosynthetic rate and water use efficiency of Fraxinus mandshurica were higher in MW than those in CK. But for the other four species, the net photosynthetic rate and water use efficiency in CK were lower than those in MW and LW. The transpiration rate responding to soil moistures varied from species to species. 展开更多
关键词 Water stress Net photosynthesis transpiration rate Water use efficiency Broadleaf/Korean pine forest
在线阅读 下载PDF
Forests,atmospheric water and an uncertain future: the new biology of the global water cycle 被引量:3
13
作者 Douglas Sheil 《Forest Ecosystems》 SCIE CSCD 2018年第3期236-257,共22页
Theory and evidence indicate that trees and other vegetation influence the atmospheric water-cycle in various ways.These influences are more important, more complex, and more poorly characterised than is widely realis... Theory and evidence indicate that trees and other vegetation influence the atmospheric water-cycle in various ways.These influences are more important, more complex, and more poorly characterised than is widely realised.While there is little doubt that changes in tree cover will impact the water-cycle, the wider consequences remain difficult to predict as the underlying relationships and processes remain poorly characterised. Nonetheless, as forests are vulnerable to human activities, these linked aspects of the water-cycle are also at risk and the potential consequences of large scale forest loss are severe. Here, for non-specialist readers, I review our knowledge of the links between vegetation-cover and climate with a focus on forests and rain(precipitation). I highlight advances, uncertainties and research opportunities. There are significant shortcomings in our understanding of the atmospheric hydrological cycle and of its representation in climate models. A better understanding of the role of vegetation and tree-cover wil reduce some of these shortcomings. I outline and il ustrate various research themes where these advances may be found.These themes include the biology of evaporation, aerosols and atmospheric motion, as well as the processes that determine monsoons and diurnal precipitation cycles. A novel theory—the ‘biotic pump’—suggests that evaporation and condensation can exert a major influence over atmospheric dynamics. This theory explains how high rainfall can be maintained within those continental land-masses that are sufficiently forested. Feedbacks within many of these processes can result in non-linear behaviours and the potential for dramatic changes as a result of forest loss(or gain): for example, switching from a wet to a dry local climate(or visa-versa). Much remains unknown and multiple research disciplines are needed to address this: forest scientists and other biologists have a major role to play.New ideas, methods and data offer opportunities to improve understanding. Expect surprises. 展开更多
关键词 Biotic pump Climate CONDENSATION Evaporation Ice-nucleation transpiration GCM VAPOUR Water-cycle
在线阅读 下载PDF
Growth and ecophysiology of seedlings of Podocarpus falcatus in plantations of exotic species and in a natural montane forest in Ethiopia 被引量:1
14
作者 Desalegn Tadele Masresha Fetene 《Journal of Forestry Research》 SCIE CAS CSCD 2013年第1期29-35,共7页
The potential role of exotic tree plantations in facilitating successional processes on degraded areas was evaluated in southern Ethiopia by comparing seedling characteristics, transpiration and photosynthetic perform... The potential role of exotic tree plantations in facilitating successional processes on degraded areas was evaluated in southern Ethiopia by comparing seedling characteristics, transpiration and photosynthetic performance of Podocarpus falcatus seedlings in Eucalyptus plantation, Pinus plantation, adjacent natural forest and clear-felled plantation site. P. falcatus seedlings exhibited differences in architecture between Eucalyptus and Pinus plantations. They had higher leaf area, shorter internode length and greater number of lateral branches in Eucalyptus plantation. At similar vapor pressure deficit (VPD), P. falcatus transpired much less than E. saligna, especially at higher VPDs. Analysis of fluorescence parameters in the leaves showed no significant differences in the level of dark-adapted and light-adapted fluorescence yield (Fv/Fm and ΔF/Fm′, respectively), electron transport rate (ETR) and nonphotochemical quenching (NPQ) among seedlings grown inside plantations and adjacent natural forest, indicating similar photosynthetic performance. Nevertheless, there was evidence of photoinhibition in P. falcatus in the clear-felled site which had low fluorescence yield but high values of NPQ as protection from photoamage. The light response curves of ETR, NPQ and ΔF/Fm′ showed similar light saturation behavior among the seedlings grown inside plantations and natural forest and suggested a sequence of light-adapted to shade-adapted behavior in Natural forest 〉 Eucalyptus plantation 〉 Pinus plantation. The results show the structural flexibility, better water-use and adaptability of P. falcatus in its use of the understory environment of plantation species. 展开更多
关键词 chlorophyll fluorescence height growth lateral growth light response curves transpiration
在线阅读 下载PDF
Sap flow rates of Minquartia guianensis in central Amazonia during the prolonged dry season of 2015–2016 被引量:1
15
作者 Saul A.Antezana-Vera Ricardo A.Marenco 《Journal of Forestry Research》 SCIE CAS CSCD 2021年第5期2067-2076,共10页
Minquartia guianensis Aubl.is a slow-growing species with several uses.In the juvenile state,it is well-adapted to low light conditions of the forest understory.However,it is still unknown how climate variability affe... Minquartia guianensis Aubl.is a slow-growing species with several uses.In the juvenile state,it is well-adapted to low light conditions of the forest understory.However,it is still unknown how climate variability affects transpiration of this species,particularly under drought stress.In this study,we aimed to assess the effect of climatic variability on sap flow rates(SFR).SFR and radial growth were measured in six trees(14-50 cm diameter)in 2015 and 2016.Climate(precipitation,irradiance,relative humidity and temperature)and soil water content(SWC)data were also collected.SFR tended to increase in the dry season,with a negative relationship between SFR and SWC and precipitation(p<0.001),while there was a positive association between radial growth and monthly precipitation(p=0.004).Irradiance and temperature were the environmental factors more closely correlated with SFR during daytime(p<0.001),whereas relative humidity and vapor pressure deficit were the most important factors at night(p<0.001).Although negative SFR were sometimes recorded at night,the mean nocturnal sap flow was positive and across trees the nighttime sap flow accounted for 12.5%of the total daily sap flow.Increased transpiration during the dry season suggests that the root system of Minquartia was able to extract water from deep soil layers.These results widen our understanding of the ecophysiology of Amazonian trees under drought and provide further insight into the potential effect of the forecasted decline in precipitation in the Amazon region. 展开更多
关键词 Reverse sap flow Soil water content transpiration Tree growth
在线阅读 下载PDF
CO_2, H_2O exchange and stomatal regulation of regenerated Camptotheca acuminata plantlets during ex vitro acclimatization 被引量:1
16
作者 WANG Hui-mei LI Yan-hua GAO Yin-xiang ZU Yuan-gang 《Journal of Forestry Research》 SCIE CAS CSCD 2006年第4期273-276,共4页
For finding the changes in CO2, H20 exchange and their stomatal regulation during ex vitro acclimatization of regenerated Camptotheca acuminata plantlets, the net photosynthesis rate (Pn), respiration rate (Ro), l... For finding the changes in CO2, H20 exchange and their stomatal regulation during ex vitro acclimatization of regenerated Camptotheca acuminata plantlets, the net photosynthesis rate (Pn), respiration rate (Ro), light compensation point (Lc) and light saturation point (Ls), transpiration rate (Tr), stomatal conductance (gs) and water use efficiency(WUE) were measured during 37 days of ex vitro acclimatization. The results showed that Pn sharply increased until 29 days, then slightly decreased. A substantial decrease in Lc and a substantial increase of Ls in the former two weeks were observed, indicating the light regime enlargement for effective leaf photosynthesis. Tr and gs abruptly decreased during the first week then linearly increased until 29days ex vitro acclimatization, reflecting the strong regulation effect of stomata on water changes of ex vitro acclimating plantlets. Stomatal regulation effect on CO2 exchange was different from that on water exchange, i.e. P, was almost independent of gs during the first week, while P. was significantly correlated with gs thereafter (i.e. dual patterns). Different from dual patterns of gs-Pn relation, the Tr monotonously linearly increased with gs. Furthermore, WUE was almost independent on gs during the first week, while a marked decreasing tendency with gs was found thereafter. At the beginning of the acclimatization, WUE was mainly determined by photosynthetic capacity, while transpiration becomes a main determinant factor for WUE from 7 to 37 days' acclimatization. 展开更多
关键词 Camptotheca acuminate ACCLIMATIZATION Photosynthesis transpiration Water use efficiency Relation between stomatal conductance (gs) and net photosynthesis rate (Pn) gs-WUE relation
在线阅读 下载PDF
Uncertainty in sap flow of Brazilian mahogany determined by the heat ratio method
17
作者 Alisson Macendo Amaral Frederico Antonio Loureiro Soares +1 位作者 Lucas Melo Vellame Marconi Batista Teixeira 《Journal of Forestry Research》 SCIE CAS CSCD 2021年第4期1457-1466,共10页
The tropical arboreal species Brazilian mahogany(Swietenia macrophylla) is very important economically and ecologically,for which understanding ecophysiological variables such as sap flow will improve understanding of... The tropical arboreal species Brazilian mahogany(Swietenia macrophylla) is very important economically and ecologically,for which understanding ecophysiological variables such as sap flow will improve understanding of the species and its cultivation.This paper aims to measure uncertainties(U) involved in the application of the heat ratio method for determining sap flow in Brazilian mahogany using sets of heating probes and thermometers installed on plants of 18 months of age,cultivated in Yellow Latosol,under a weighing lysimeter and located in a protected environment.The uncertainty in sap flow was calculated as the combination of uncertainty in the thermal diffusivity(U_(k)),conductive section(U_(Sc)) and corrected sap velocity(U_(Vc)).U_(k) had greater weight in determining the flow of sap in Brazilian mahogany,when compared to U_(Sc) and U_(Vc).The thermal diffusivity during the cycle,or period evaluated,must be adjusted to improve the accuracy of the heat ratio method because the sap flow overestimated transpiration by 15.0%.When soil water was optimal In addition,the vapor pressure deficit linearly and indirectly influenced the SF with a difference of 14.6%. 展开更多
关键词 Heat pulse DIFFUSIVITY Reliability transpiration Vapor pressure deficit
在线阅读 下载PDF
Building and Environment
18
作者 侯恩哲(摘录) 《建筑节能》 CAS 2019年第1期81-81,共1页
Previous research has shown that most of the green roof benefits are related to the cooling effect.In the literature available,however,it is still not clear how and how much the evapotranspiration affects the performa... Previous research has shown that most of the green roof benefits are related to the cooling effect.In the literature available,however,it is still not clear how and how much the evapotranspiration affects the performance of a green roof.In order to fill the gap in this research topic,this study carries out a review on the cooling effect due to the evapotranspiration process of green roofs.First of all,an overview of the evapotranspiration phenomenon in green roofs,as well as the equipment and methods used for its measurement are presented.Then,the main experimental results available in literature,the physical-mathematical models and the dynamic simulation software used for the evaluation of the latent heat flux are also analysed and discussed among the available literature.Moreover,this review proposes a classification of the results carried out by previous studies as function of the main parameters affecting the evapotranspiration process(e.g.volumetric water content,stomatal resistance,Leaf Area Index,solar radiation,wind velocity,relative humidity,soil thickness,and substrate composition).Additionally,a sensitivity analysis of the results obtained from the literature allowed underlining the correlation among the main factors affecting the evapotranspiration.Finally,a vision of the world area where green roof studies were performed is provided.From the results,it is possible to emphasize that most of the studies that evaluated the evapotranspiration used high precision load cells.Furthermore,all the heat transfer models of green roofs considered in this review took into account the latent heat flux due to evaporation of water from the substrate and plants transpiration,however,only few of them were experimentally validated. 展开更多
关键词 EVAPORATION transpiration LATENT HEAT FLUX COOLING effect
在线阅读 下载PDF
Quercus acutissima exhibits more adaptable water uptake patterns in response to seasonal changes compared to Pinus massoniana
19
作者 Suimeng Zhang Xiaodi Wang +3 位作者 Zhaowang Huang YiTao Bao Jiang Jiang Ziqiang Liu 《Forest Ecosystems》 2025年第1期29-37,共9页
Background:Seasonal precipitation variability significantly affects water use in forests;however,whether water uptake is adapted to changes in precipitation,particularly whether it could affect the coexistence of tree... Background:Seasonal precipitation variability significantly affects water use in forests;however,whether water uptake is adapted to changes in precipitation,particularly whether it could affect the coexistence of tree species,has rarely been quantified in forest systems.Method:In this study,dual stable isotopes and the Li-6400 portable photosynthesis system were used to determine the water sources of a mixed conifer(Pinus massoniana)and broadleaf(Quercus acutissima)forest and changes in hydraulic characteristics during the dry and wet seasons in a southern hilly region of China.Results:Although the hydraulic characteristics of P.massoniana were lower than those of Q.acutissima,it maintained a stable water source from the deep soil layer and a higher stomatal conductance(Gs),leading to a higher transpiration rate(Tr)during the growing seasons.Q.acutissima mainly absorbed water from deeper soil layers in the dry season and took up from shallow soil layers in the wet season.Its Gs values exhibited sensitivity to precipitation,while it maintained a lower Tr value during the growing seasons.The excessive water-use strategy observed in P.massoniana may confer weak drought-tolerance during higher frequency and more intense extreme precipitation events,whereas Q.acutissima may exhibit better ecological adaption to precipitation changes.Conclusions:The overlap of water niches in mixed forests did not appear to affect the coexistence of tree species.The present study provides insights into reforestation and water management in the southern hilly regions of China. 展开更多
关键词 Water use transpiration Stable isotope Hydraulic characteristics
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部