Aimed at the uncertain characteristics of discrete logistics network design,an interval hierarchical triangular uncertain OD demand model based on interval demand and network flow is presented.Under consideration of t...Aimed at the uncertain characteristics of discrete logistics network design,an interval hierarchical triangular uncertain OD demand model based on interval demand and network flow is presented.Under consideration of the system profit,the uncertain demand of logistics network is measured by interval variables and interval parameters,and an interval planning model of discrete logistics network is established.The risk coefficient and maximum constrained deviation are defined to realize the certain transformation of the model.By integrating interval algorithm and genetic algorithm,an interval hierarchical optimal genetic algorithm is proposed to solve the model.It is shown by a tested example that in the same scenario condition an interval solution[3275.3,3 603.7]can be obtained by the model and algorithm which is obviously better than the single precise optimal solution by stochastic or fuzzy algorithm,so it can be reflected that the model and algorithm have more stronger operability and the solution result has superiority to scenario decision.展开更多
Rural power network planning is a complicated nonlinear optimized combination problem which based on load forecasting results, and its actual load is affected by many uncertain factors, which influenced optimization r...Rural power network planning is a complicated nonlinear optimized combination problem which based on load forecasting results, and its actual load is affected by many uncertain factors, which influenced optimization results of rural power network planning. To solve the problems, the interval algorithm was used to modify the initial search method of uncertainty load mathematics model in rural network planning. Meanwhile, the genetic/tabu search combination algorithm was adopted to optimize the initialized network. The sample analysis results showed that compared with the certainty planning, the improved method was suitable for urban medium-voltage distribution network planning with consideration of uncertainty load and the planning results conformed to the reality.展开更多
The optimal transmission lines assignment with maximal reliabilities (OTLAMR) in the multi-source multi-sink multi-state computer network (MMMCN) was investigated. The OTLAMR problem contains two sub-problems: the MMM...The optimal transmission lines assignment with maximal reliabilities (OTLAMR) in the multi-source multi-sink multi-state computer network (MMMCN) was investigated. The OTLAMR problem contains two sub-problems: the MMMCN reliabilities evaluation and multi-objective transmission lines assignment optimization. First, a reliability evaluation with a transmission line assignment (RETLA) algorithm is proposed to calculate the MMMCN reliabilities under the cost constraint for a certain transmission lines configuration. Second, the non-dominated sorting genetic algorithm II (NSGA-II) is adopted to find the non-dominated set of the transmission lines assignments based on the reliabilities obtained from the RETLA algorithm. By combining the RETLA and the NSGA-II algorithms together, the RETLA-NSGA II algorithm is proposed to solve the OTLAMR problem. The experiments result show that the RETLA-NSGA II algorithm can provide efficient solutions in a reasonable time, from which the decision makers can choose the best solution based on their preferences and experiences.展开更多
基金Project(51178061)supported by the National Natural Science Foundation of ChinaProject(2010FJ6016)supported by Hunan Provincial Science and Technology,China+1 种基金Project(12C0015)supported by Scientific Research Fund of Hunan Provincial Education Department,ChinaProject(13JJ3072)supported by Hunan Provincial Natural Science Foundation of China
文摘Aimed at the uncertain characteristics of discrete logistics network design,an interval hierarchical triangular uncertain OD demand model based on interval demand and network flow is presented.Under consideration of the system profit,the uncertain demand of logistics network is measured by interval variables and interval parameters,and an interval planning model of discrete logistics network is established.The risk coefficient and maximum constrained deviation are defined to realize the certain transformation of the model.By integrating interval algorithm and genetic algorithm,an interval hierarchical optimal genetic algorithm is proposed to solve the model.It is shown by a tested example that in the same scenario condition an interval solution[3275.3,3 603.7]can be obtained by the model and algorithm which is obviously better than the single precise optimal solution by stochastic or fuzzy algorithm,so it can be reflected that the model and algorithm have more stronger operability and the solution result has superiority to scenario decision.
文摘Rural power network planning is a complicated nonlinear optimized combination problem which based on load forecasting results, and its actual load is affected by many uncertain factors, which influenced optimization results of rural power network planning. To solve the problems, the interval algorithm was used to modify the initial search method of uncertainty load mathematics model in rural network planning. Meanwhile, the genetic/tabu search combination algorithm was adopted to optimize the initialized network. The sample analysis results showed that compared with the certainty planning, the improved method was suitable for urban medium-voltage distribution network planning with consideration of uncertainty load and the planning results conformed to the reality.
基金Projects(61004074,61134001,21076179)supported by the National Natural Science Foundation of ChinaProject(2009BAG12A08)supported by the National Key Technology Support Program of China+1 种基金Project(2010QNA5001)supported by the Fundamental Research Funds for the Central Universities of ChinaProjects(2012AA06A404,2006AA04Z184)supported by the National High Technology Research and Development Program of China
文摘The optimal transmission lines assignment with maximal reliabilities (OTLAMR) in the multi-source multi-sink multi-state computer network (MMMCN) was investigated. The OTLAMR problem contains two sub-problems: the MMMCN reliabilities evaluation and multi-objective transmission lines assignment optimization. First, a reliability evaluation with a transmission line assignment (RETLA) algorithm is proposed to calculate the MMMCN reliabilities under the cost constraint for a certain transmission lines configuration. Second, the non-dominated sorting genetic algorithm II (NSGA-II) is adopted to find the non-dominated set of the transmission lines assignments based on the reliabilities obtained from the RETLA algorithm. By combining the RETLA and the NSGA-II algorithms together, the RETLA-NSGA II algorithm is proposed to solve the OTLAMR problem. The experiments result show that the RETLA-NSGA II algorithm can provide efficient solutions in a reasonable time, from which the decision makers can choose the best solution based on their preferences and experiences.
文摘针对新能源不确定性,文中基于深度确定性策略梯度(deep deterministic policy gradient,DDPG)算法,提出了考虑新能源承载能力的交直流电网鲁棒扩展规划方法。首先,建立了交直流电网的扩展规划模型。其次,构建了考虑新能源接入的交直流电网鲁棒扩展规划模型,提出了基于极限场景集的新能源不确定性处理方法。进一步,提出了基于改进DDPG的扩展规划模型求解方法。最后,通过IEEE RTS 24系统、IEEE New England 39系统以及中国西南电网的算例分析,验证了所提方法能够有效降低弃风弃光量和切负荷量,且在不增加额外投资的前提下显著降低规划成本。
文摘新能源发电具有随机性和波动性,“沙戈荒”大型风光基地的新能源并网导致电网潮流复杂多变,线路阻塞几率增大,这对电网规划带来新挑战。动态热定值(dynamic thermalrating,DTR)技术能根据天气条件和设备状态评估线路的载流能力,可有效挖掘电网侧的灵活调节潜力。此外,储能的双向快速调节可缓解电网传输压力,具有一定的输电替代作用。因此,该文集成DTR技术,提出储能与输电网协同的鲁棒规划模型。为充分考虑输电线路DTR技术和储能的协同效果,规划模型中嵌入了基于典型日的运行模拟。通过基于多区域气象数据的DTR评估方法量化典型日内线路的动态传输能力,并在典型日运行模拟中采用鲁棒优化方法考虑新能源出力的不确定性,以更好地发挥储能的灵活调节作用。针对建立的鲁棒规划模型,提出一种适用于混合整数线性规划的改进列约束生成(column and constraint generation,C&CG)算法对模型进行求解,并引入一种新的不精确C&CG迭代过程进行加速。通过西北电网实际系统分析表明,考虑DTR的输–储协同规划将规划线路数量从29条减少到10条,并提升了线路利用效率。此外,系统运行成本降低了9.6%,新能源消纳率从87.7%提升到95.1%。