A new method of 3D transient eddy current field calculation is proposed. The Maxwell equations with time component elimination (METCE) are derived under the assumption of magnetic quasi static approximation, especia...A new method of 3D transient eddy current field calculation is proposed. The Maxwell equations with time component elimination (METCE) are derived under the assumption of magnetic quasi static approximation, especially for the sample of low conductivity. Based on METCE, we deduce a more efficient reconstruction algorithm of a 3D transient eddy current field. The computational burden is greatly reduced through the new algorithm, and the computational efficiency is improved. This new algorithm decompounds the space-time variables into two individual variables. The idea is to solve the spatial vector component firstly, and then multiply it by the corresponded time component. The iterative methods based on METCE are introduced to recover the distribution of conductivity in magneto-acoustic tomography. The reconstructed images of conductivity are consistent with the original distribution, which validate the new method.展开更多
Our experiment shows that the dust grains, suspended on the edge of the sheath of a radio-frequency discharge, undergo a contraction when switching a vertical magnetic field on, and an expansion when switching the mag...Our experiment shows that the dust grains, suspended on the edge of the sheath of a radio-frequency discharge, undergo a contraction when switching a vertical magnetic field on, and an expansion when switching the magnetic field off. We call this kind of magnetic field "transient magnetic field". A primary analysis is proposed for the phenomenon.展开更多
The instantaneous variations of the hydraulic characteristics take place in centrifugal pumps during their start-up,shutdown and other variable speed operations.In this paper,the variable speed method was proposed to ...The instantaneous variations of the hydraulic characteristics take place in centrifugal pumps during their start-up,shutdown and other variable speed operations.In this paper,the variable speed method was proposed to simulate the transient internal flow field and the external performance of the pump during starting and stopping periods.The terms of accelerations due to variable speeds in the flow governing equations were analyzed in a multiple reference of frame(MRF).A transient CFD simulation was performed for a typical centrifugal pump by using ANSYS-CFX with the standard k-εturbulence model.The entire simulation process was composed of four stages:start-up,normal run,shutdown and post-shutdown.The function of rotating speed with regard to time was set by CEL language directly into the impeller domain in the pre-processor of the software to conduct variable speed simulation.The variations of the flow field in the centrifugal pump were obtained from the transient simulation.The changing laws of flow rate,head and other performance parameters over time were also analyzed and summarized.展开更多
In this paper, we investigate the temperature and drain bias dependency of single event transient (SET) in 25-nm fin field-effect-transistor (FinFET) technology in a temperature range of 0-135 ℃ and supply voltag...In this paper, we investigate the temperature and drain bias dependency of single event transient (SET) in 25-nm fin field-effect-transistor (FinFET) technology in a temperature range of 0-135 ℃ and supply voltage range of 0.4 V- 1.6 V. Technology computer-aided design (TCAD) three-dimensional simulation results show that the drain current pulse duration increases from 0.6 ns to 3.4 ns when the temperature increases from 0 to 135 ℃. The charge collected increases from 45.5 ℃ to 436.9 fC and the voltage pulse width decreases from 0.54 ns to 0.18 ns when supply voltage increases from 0.4 V to 1.6 V. Furthermore, simulation results and the mechanism of temperature and bias dependency are discussed.展开更多
Miniaturization of electronic package leads to high heat density and heat accumulation in electronics device, resulting in short life time and premature failure of the device. Junction temperature and thermal resistan...Miniaturization of electronic package leads to high heat density and heat accumulation in electronics device, resulting in short life time and premature failure of the device. Junction temperature and thermal resistance are the critical parameters that determine the thermal management and reliability in electronics cooling. Metal oxide field effect transistor(MOSFET)is an important semiconductor device for light emitting diode-integrated circuit(LED IC) driver application, and thermal management in MOSFET is a major challenge. In this study, investigations on thermal performance of MOSFET are performed for evaluating the junction temperature and thermal resistance. Suitable modifications in FR4 substrates are proposed by introducing thermal vias and copper layer coating to improve the thermal performance of MOSFET. Experiments are conducted using thermal transient tester(T3ster) at 2.0 A input current and ambient temperature varying from25℃ to 75℃. The thermal parameters are measured for three proposed designs: FR4 with circular thermal vias, FR4 with single strip of copper layer and embedded vias, and FR4 with I-shaped copper layer, and compared with that of plain FR4 substrate. From the experimental results, FR4I-shaped shows promising results by 33.71% reduction in junction temperature and 54.19% reduction in thermal resistance. For elevated temperature, the relative increases in junction temperature and thermal resistance are lower for FR4I-shaped than those for other substrates considered. The introduction of thermal vias and copper layer plays a significant role in thermal performance.展开更多
针对当前等效全装药(Equivalent Full Charge,EFC)折算系数的国家军用标准预测值与实际测试结果差距较大的问题,基于热-化学烧蚀模型,研究不同工况下射击发数与EFC射击发数间的折算系数计算方法。射击一定发数后,假设身管内壁白层厚度...针对当前等效全装药(Equivalent Full Charge,EFC)折算系数的国家军用标准预测值与实际测试结果差距较大的问题,基于热-化学烧蚀模型,研究不同工况下射击发数与EFC射击发数间的折算系数计算方法。射击一定发数后,假设身管内壁白层厚度及成分随射击发数呈周期性变化,由质量扩散定律建立膛线起始部热-化学烧蚀量与火药燃气侵蚀性、内膛表面瞬态温度的关系。通过经典内弹道模型获得弹后空间火药燃气平均温度及内壁面强制对流换热系数,在考虑后效期高温燃气影响的基础上,建立身管内壁瞬态温度计算模型。以对内弹道过程有重要影响的射速、药量和药温为重点,计算不同射速、不同药号和不同药温下的身管内壁烧蚀量,并据此获得不同工况下的折算系数。研究发现,射速越快,装药质量越大,装药初始温度越高,单发射击造成的身管烧蚀越严重,其对应的EFC折算系数越大,其中强装药的EFC折算系数可达2.131。以某型155 mm火炮身管实弹射击数据为例,验证了新模型的合理性。展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 51137004,61427806 and 51577184the Equipment Development Project of Chinese Academy of Sciences under Grant No YZ201507
文摘A new method of 3D transient eddy current field calculation is proposed. The Maxwell equations with time component elimination (METCE) are derived under the assumption of magnetic quasi static approximation, especially for the sample of low conductivity. Based on METCE, we deduce a more efficient reconstruction algorithm of a 3D transient eddy current field. The computational burden is greatly reduced through the new algorithm, and the computational efficiency is improved. This new algorithm decompounds the space-time variables into two individual variables. The idea is to solve the spatial vector component firstly, and then multiply it by the corresponded time component. The iterative methods based on METCE are introduced to recover the distribution of conductivity in magneto-acoustic tomography. The reconstructed images of conductivity are consistent with the original distribution, which validate the new method.
文摘Our experiment shows that the dust grains, suspended on the edge of the sheath of a radio-frequency discharge, undergo a contraction when switching a vertical magnetic field on, and an expansion when switching the magnetic field off. We call this kind of magnetic field "transient magnetic field". A primary analysis is proposed for the phenomenon.
文摘The instantaneous variations of the hydraulic characteristics take place in centrifugal pumps during their start-up,shutdown and other variable speed operations.In this paper,the variable speed method was proposed to simulate the transient internal flow field and the external performance of the pump during starting and stopping periods.The terms of accelerations due to variable speeds in the flow governing equations were analyzed in a multiple reference of frame(MRF).A transient CFD simulation was performed for a typical centrifugal pump by using ANSYS-CFX with the standard k-εturbulence model.The entire simulation process was composed of four stages:start-up,normal run,shutdown and post-shutdown.The function of rotating speed with regard to time was set by CEL language directly into the impeller domain in the pre-processor of the software to conduct variable speed simulation.The variations of the flow field in the centrifugal pump were obtained from the transient simulation.The changing laws of flow rate,head and other performance parameters over time were also analyzed and summarized.
基金Project supported by the State Key Program of the National Natural Science of China (Grant No. 60836004)the National Natural Science Foundation of China (Grant Nos. 61076025 and 60906014)
文摘In this paper, we investigate the temperature and drain bias dependency of single event transient (SET) in 25-nm fin field-effect-transistor (FinFET) technology in a temperature range of 0-135 ℃ and supply voltage range of 0.4 V- 1.6 V. Technology computer-aided design (TCAD) three-dimensional simulation results show that the drain current pulse duration increases from 0.6 ns to 3.4 ns when the temperature increases from 0 to 135 ℃. The charge collected increases from 45.5 ℃ to 436.9 fC and the voltage pulse width decreases from 0.54 ns to 0.18 ns when supply voltage increases from 0.4 V to 1.6 V. Furthermore, simulation results and the mechanism of temperature and bias dependency are discussed.
基金Project supported by the Collaborative Research in Engineering,Science&Technology(Grant No.P28C2-13)
文摘Miniaturization of electronic package leads to high heat density and heat accumulation in electronics device, resulting in short life time and premature failure of the device. Junction temperature and thermal resistance are the critical parameters that determine the thermal management and reliability in electronics cooling. Metal oxide field effect transistor(MOSFET)is an important semiconductor device for light emitting diode-integrated circuit(LED IC) driver application, and thermal management in MOSFET is a major challenge. In this study, investigations on thermal performance of MOSFET are performed for evaluating the junction temperature and thermal resistance. Suitable modifications in FR4 substrates are proposed by introducing thermal vias and copper layer coating to improve the thermal performance of MOSFET. Experiments are conducted using thermal transient tester(T3ster) at 2.0 A input current and ambient temperature varying from25℃ to 75℃. The thermal parameters are measured for three proposed designs: FR4 with circular thermal vias, FR4 with single strip of copper layer and embedded vias, and FR4 with I-shaped copper layer, and compared with that of plain FR4 substrate. From the experimental results, FR4I-shaped shows promising results by 33.71% reduction in junction temperature and 54.19% reduction in thermal resistance. For elevated temperature, the relative increases in junction temperature and thermal resistance are lower for FR4I-shaped than those for other substrates considered. The introduction of thermal vias and copper layer plays a significant role in thermal performance.
文摘针对当前等效全装药(Equivalent Full Charge,EFC)折算系数的国家军用标准预测值与实际测试结果差距较大的问题,基于热-化学烧蚀模型,研究不同工况下射击发数与EFC射击发数间的折算系数计算方法。射击一定发数后,假设身管内壁白层厚度及成分随射击发数呈周期性变化,由质量扩散定律建立膛线起始部热-化学烧蚀量与火药燃气侵蚀性、内膛表面瞬态温度的关系。通过经典内弹道模型获得弹后空间火药燃气平均温度及内壁面强制对流换热系数,在考虑后效期高温燃气影响的基础上,建立身管内壁瞬态温度计算模型。以对内弹道过程有重要影响的射速、药量和药温为重点,计算不同射速、不同药号和不同药温下的身管内壁烧蚀量,并据此获得不同工况下的折算系数。研究发现,射速越快,装药质量越大,装药初始温度越高,单发射击造成的身管烧蚀越严重,其对应的EFC折算系数越大,其中强装药的EFC折算系数可达2.131。以某型155 mm火炮身管实弹射击数据为例,验证了新模型的合理性。