期刊文献+
共找到1,824篇文章
< 1 2 92 >
每页显示 20 50 100
Application of sparse S transform network with knowledge distillation in seismic attenuation delineation
1
作者 Nai-Hao Liu Yu-Xin Zhang +3 位作者 Yang Yang Rong-Chang Liu Jing-Huai Gao Nan Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2345-2355,共11页
Time-frequency analysis is a successfully used tool for analyzing the local features of seismic data.However,it suffers from several inevitable limitations,such as the restricted time-frequency resolution,the difficul... Time-frequency analysis is a successfully used tool for analyzing the local features of seismic data.However,it suffers from several inevitable limitations,such as the restricted time-frequency resolution,the difficulty in selecting parameters,and the low computational efficiency.Inspired by deep learning,we suggest a deep learning-based workflow for seismic time-frequency analysis.The sparse S transform network(SSTNet)is first built to map the relationship between synthetic traces and sparse S transform spectra,which can be easily pre-trained by using synthetic traces and training labels.Next,we introduce knowledge distillation(KD)based transfer learning to re-train SSTNet by using a field data set without training labels,which is named the sparse S transform network with knowledge distillation(KD-SSTNet).In this way,we can effectively calculate the sparse time-frequency spectra of field data and avoid the use of field training labels.To test the availability of the suggested KD-SSTNet,we apply it to field data to estimate seismic attenuation for reservoir characterization and make detailed comparisons with the traditional time-frequency analysis methods. 展开更多
关键词 S transform Deep learning Knowledge distillation Transfer learning Seismic attenuation delineation
在线阅读 下载PDF
BBTUNet:基于上下文Transformer的肝脏肿瘤分割算法研究 被引量:1
2
作者 宋长明 宋蒙 +2 位作者 肖露 梁朝阳 彩朔 《电子设计工程》 2024年第5期190-195,共6页
肝癌是世界范围内最常见的恶性肿瘤之一,严重威胁着人类的生命健康,从计算机断层扫描(Computed Tomography,CT)中精确分割出肝脏肿瘤对后期的临床诊断具有重要的意义。现有的方法虽然实现了肝脏肿瘤的自动化分割,但肝脏肿瘤边界模糊、... 肝癌是世界范围内最常见的恶性肿瘤之一,严重威胁着人类的生命健康,从计算机断层扫描(Computed Tomography,CT)中精确分割出肝脏肿瘤对后期的临床诊断具有重要的意义。现有的方法虽然实现了肝脏肿瘤的自动化分割,但肝脏肿瘤边界模糊、目标较小、容易漏检等问题尚未很好地解决,肝脏肿瘤的精确分割仍旧是一项极具挑战的任务。针对这些问题,该文提出一种新的分割网络BBTUNet。构建基于Transformer的上下文Bridge,重新设计UNet的跳跃连接结构,有效捕捉多尺度特征之间的上下文关系。在Transformer的前馈神经网络中引入可分离的空洞卷积,提出改进的前馈神经网络BFFN,有效融合全局和局部信息,增强边界特征,细化分割边缘。在3DIRCADB数据集上对模型进行训练和测试,实验结果表明,提出的BBTUNet网络的Dice系数为82.1%,ACC为96.4%,相较于UNet网络,分别提升了10.9%、4.6%,且对于小尺寸、低对比度、边界模糊的肿瘤分割具有显著优势。 展开更多
关键词 肝肿瘤分割 Unet transformER 上下文Bridge
在线阅读 下载PDF
CNN联合多尺度Transformer的高光谱与多光谱图像融合
3
作者 徐光宪 周伟杰 马飞 《红外技术》 北大核心 2025年第1期52-62,共11页
高光谱图像具有丰富的光谱信息,多光谱图像具有精妙的几何特征,融合高分辨率的多光谱图像和低分辨率的高光谱图像可以获取更为全面的遥感数据图像。然而现有的融合网络大多数基于卷积神经网络所设计,对于结构复杂的遥感类图像而言,依赖... 高光谱图像具有丰富的光谱信息,多光谱图像具有精妙的几何特征,融合高分辨率的多光谱图像和低分辨率的高光谱图像可以获取更为全面的遥感数据图像。然而现有的融合网络大多数基于卷积神经网络所设计,对于结构复杂的遥感类图像而言,依赖于核大小的卷积运算,容易导致特征融合阶段缺乏一些全局上下文信息。为保证图像融合的质量,本文提出了一种CNN(Convolutional Neural Network,CNN)联合多尺度transformer网络来实现多光谱和高光谱图像融合,结合了CNN的特征提取能力与transformer的全局建模优势。网络将融合任务分为了两个阶段,特征提取阶段和融合阶段。特征提取阶段,针对图像特性,基于卷积神经网络分别设计了不同模块用于特征提取。融合阶段,通过多尺度transformer模块从局部到全局建立信息间长距离关联,最后通过多层卷积层将特征映射为高分辨率的高光谱图像。经过在CAVE和Harvard数据集的实验结果表明,本文所提算法与其他经典算法相比,能更好地提升融合图像的质量。 展开更多
关键词 高光谱图像 多光谱图像 卷积神经网络 transformER 图像融合
在线阅读 下载PDF
一种融合Transformer的多尺度结构图像去模糊方法
4
作者 郭业才 阳刚 毛湘南 《电光与控制》 北大核心 2025年第3期62-68,共7页
针对现有图像去模糊模型对于全局特征信息学习的不足以及感受野受限的问题,提出一种改进的融合Transformer的多尺度结构图像去模糊方法。首先,为了提高模型对全局特征学习以及远程像素捕获的能力,设计了一个多特征多尺度融合模块,该模... 针对现有图像去模糊模型对于全局特征信息学习的不足以及感受野受限的问题,提出一种改进的融合Transformer的多尺度结构图像去模糊方法。首先,为了提高模型对全局特征学习以及远程像素捕获的能力,设计了一个多特征多尺度融合模块,该模块利用双旁路结构将局部特征信息和全局特征信息有效地结合起来,同时简化Transformer以提升计算效率;其次,为了缓解卷积操作缺乏输入内容自适应的缺点,将通道注意力引入到特征融合模块中来动态地学习有用信息;最后,在基准数据集GoPro上,所提方法取得的峰值信噪比为31.87 dB,结构相似度为0.952。实验结果表明,所提方法与主流方法相比能够有效地复原图像细节特征,并且能够提升后续计算机视觉任务的鲁棒性。 展开更多
关键词 图像去模糊 多尺度结构 transformER 卷积神经网络 注意力机制
在线阅读 下载PDF
基于CNN-Swin Transformer Network的LPI雷达信号识别 被引量:1
5
作者 苏琮智 杨承志 +2 位作者 邴雨晨 吴宏超 邓力洪 《现代雷达》 CSCD 北大核心 2024年第3期59-65,共7页
针对在低信噪比(SNR)条件下,低截获概率雷达信号调制方式识别准确率低的问题,提出一种基于Transformer和卷积神经网络(CNN)的雷达信号识别方法。首先,引入Swin Transformer模型并在模型前端设计CNN特征提取层构建了CNN+Swin Transforme... 针对在低信噪比(SNR)条件下,低截获概率雷达信号调制方式识别准确率低的问题,提出一种基于Transformer和卷积神经网络(CNN)的雷达信号识别方法。首先,引入Swin Transformer模型并在模型前端设计CNN特征提取层构建了CNN+Swin Transformer网络(CSTN),然后利用时频分析获取雷达信号的时频特征,对图像进行预处理后输入CSTN模型进行训练,由网络的底部到顶部不断提取图像更丰富的语义信息,最后通过Softmax分类器对六类不同调制方式信号进行分类识别。仿真实验表明:在SNR为-18 dB时,该方法对六类典型雷达信号的平均识别率达到了94.26%,证明了所提方法的可行性。 展开更多
关键词 低截获概率雷达 信号调制方式识别 Swin transformer网络 卷积神经网络 时频分析
在线阅读 下载PDF
多尺度特征提取的Transformer短期风电功率预测
6
作者 徐武 范鑫豪 +1 位作者 沈智方 刘洋 《太阳能学报》 北大核心 2025年第2期640-648,共9页
针对短期风电功率预测特征提取尺度单一问题,设计一种基于多尺度特征提取的Transformer短期风电功率预测模型(MTPNet)。首先,在Transformer构架的基础上,利用维数不变嵌入,设计多尺度特征提取网络挖掘风电功率序列本身时序特征,保证了... 针对短期风电功率预测特征提取尺度单一问题,设计一种基于多尺度特征提取的Transformer短期风电功率预测模型(MTPNet)。首先,在Transformer构架的基础上,利用维数不变嵌入,设计多尺度特征提取网络挖掘风电功率序列本身时序特征,保证了特征提取时维数不被破坏;其次,利用融合自注意力机制的长短期记忆网络挖掘气象条件与功率之间的全局依赖关系;最后,融合风电功率序列本身时序特征和气象条件依赖关系,实现短期风电功率预测。实例仿真结果表明,MTPNet模型预测精度得到提升;消融实验证明了模型各模块的可靠性和有效性,具有一定的实用价值。 展开更多
关键词 风电功率预测 transformER 注意力机制 特征提取 长短期记忆网络 维数不变嵌入层
在线阅读 下载PDF
基于音乐情感的ERoPE-Transformer音乐生成方法
7
作者 张玉梅 陈章杰 +2 位作者 吕小姣 延成岭 卢恒 《榆林学院学报》 2025年第2期78-86,共9页
针对音乐生成缺乏情感表达和交互性的问题,提出一种基于音乐情感的ERoPE-Transformer音乐生成方法。基于情感的旋转位置编码Transformer模型(Emotion Rotary Position Embedding Transformer,ERoPE-Transformer)以CP Transformer模型为... 针对音乐生成缺乏情感表达和交互性的问题,提出一种基于音乐情感的ERoPE-Transformer音乐生成方法。基于情感的旋转位置编码Transformer模型(Emotion Rotary Position Embedding Transformer,ERoPE-Transformer)以CP Transformer模型为基础模型,在CP编码的基础上加入情感标签,将音乐序列转换成离散的符号序列,并且引入旋转位置编码,提高模型的外推性,更好地捕获长序列建模中的音乐信息和情感特征。最后通过客观和主观实验对音乐质量和情感效果进行验证,与其他常用的音乐生成模型进行比较,包括Transformer-XL模型、CP Transformer模型和CEG-Transformer模型。客观实验从音高、节奏和音乐结构三个方面评价音乐质量,同时采用DUPSO-DSKSVM民歌快速分类算法对音乐情感进行分类,以验证生成音乐的情感效果。主观实验通过人耳听力测试从不同方面对音乐质量进行打分评价,同时使用人耳听力测试对音乐的情感效果进行评价。实验结果表明,本文提出的ERoPE-Transformer模型在音乐质量和情感表达上都有很好的效果,优于其他三种方法。 展开更多
关键词 情感音乐生成 transformer网络 旋转位置编码
在线阅读 下载PDF
Multiscale Fusion Transformer Network for Hyperspectral Image Classification 被引量:2
8
作者 Yuquan Gan Hao Zhang Chen Yi 《Journal of Beijing Institute of Technology》 EI CAS 2024年第3期255-270,共16页
Convolutional neural network(CNN)has excellent ability to model locally contextual information.However,CNNs face challenges for descripting long-range semantic features,which will lead to relatively low classification... Convolutional neural network(CNN)has excellent ability to model locally contextual information.However,CNNs face challenges for descripting long-range semantic features,which will lead to relatively low classification accuracy of hyperspectral images.To address this problem,this article proposes an algorithm based on multiscale fusion and transformer network for hyperspectral image classification.Firstly,the low-level spatial-spectral features are extracted by multi-scale residual structure.Secondly,an attention module is introduced to focus on the more important spatialspectral information.Finally,high-level semantic features are represented and learned by a token learner and an improved transformer encoder.The proposed algorithm is compared with six classical hyperspectral classification algorithms on real hyperspectral images.The experimental results show that the proposed algorithm effectively improves the land cover classification accuracy of hyperspectral images. 展开更多
关键词 hyperspectral image land cover classification MULTI-SCALE transformER
在线阅读 下载PDF
基于多尺度U-Net与Transformer特征融合的航空遥感图像飞机检测方法
9
作者 张善文 邵彧 +1 位作者 李萍 令伟锋 《弹箭与制导学报》 北大核心 2024年第3期51-58,共8页
航空遥感图像(ARSI)飞机检测一直是一个重要且具有挑战性的课题。针对现有ARSI飞机检测方法(ARSIAD)检测目标的边缘模糊、小目标的检测精度低、没有充分利用ARSI的全局上下文信息等问题,提出一种基于多尺度U-Net与Transformer(MSU-Trans... 航空遥感图像(ARSI)飞机检测一直是一个重要且具有挑战性的课题。针对现有ARSI飞机检测方法(ARSIAD)检测目标的边缘模糊、小目标的检测精度低、没有充分利用ARSI的全局上下文信息等问题,提出一种基于多尺度U-Net与Transformer(MSU-Trans)特征融合的ARSIAD方法。通过多尺度卷积模块Inception提取ARSI中多样性目标的分类特征,通过Transformer增强模型的全局语义检测性能,通过特征融合模块整合高层和低层特征,得到航空目标图像完整的边缘和纹理特征。该模型结合多尺度U-Net较强的局部特征提取能力和Transformer较强的全局上下文依存关系提取能力,进而提高MSU-Trans的整体检测性能。在ARSI集上的试验表明,与U-Net、多尺度U-Net、注意力U-Nets相比,MSU-Trans具有较高的检测精度,精度超过95%,该方法为ARSIAD提供一定的技术支撑。 展开更多
关键词 航空遥感图像飞机检测 多尺度U-net transformER 多尺度U-nettransformer
在线阅读 下载PDF
增强双流Transformer的柴油发动机剩余寿命预测模型
10
作者 张曦 杨颖 +2 位作者 陈超君 王春风 杨磊 《汽车工程》 北大核心 2025年第2期292-300,325,共10页
基于Transformer的模型在剩余使用寿命(remaining useful life,RUL)预测方面取得了显著的进展。然而,现有Transformer模型主要存在以下不足:模型在提取局部特征方面有所欠缺,且没有同时考虑输入特征的不同时间和不同空间的重要性。针对... 基于Transformer的模型在剩余使用寿命(remaining useful life,RUL)预测方面取得了显著的进展。然而,现有Transformer模型主要存在以下不足:模型在提取局部特征方面有所欠缺,且没有同时考虑输入特征的不同时间和不同空间的重要性。针对以上问题,提出一种增强的双流Transformer模型,通过局部特征提取模块和交互融合模块对模型进行增强。首先,通过局部特征提取模块分别在时间流和空间流提取局部特征,以弥补Transformer在局部特征提取方面的不足。然后,使用双流Transformer分别在时间和空间维度提取长期依赖,增强双流分支的互补学习。最后,构建交互融合模块,通过双线性融合方法捕获流级交互,进一步提升预测效果。使用多个模型在某柴油发动机制造商两个真实的数据集上进行实验,其结果表明评价指标RMSE和Score至少分别降低3.23%和5.89%。 展开更多
关键词 剩余使用寿命预测 transformer编码器 卷积神经网络 特征融合 滑动窗口
在线阅读 下载PDF
基于多尺度胶囊Swin Transformer的SAR图像目标识别方法
11
作者 侯宇超 王洁 +4 位作者 李洪涛 郝岩 段晓旗 黄凯文 田有亮 《通信学报》 北大核心 2025年第3期274-290,共17页
通过协同胶囊单元的语义特征编码和Swin Transformer的上下文特征图建模优势相结合,提出了一种多尺度胶囊Swin Transformer网络(MSCSTN),将胶囊编码和Swin Transformer联合应用于SAR图像目标识别。该网络集成3个并行的胶囊Swin Transfor... 通过协同胶囊单元的语义特征编码和Swin Transformer的上下文特征图建模优势相结合,提出了一种多尺度胶囊Swin Transformer网络(MSCSTN),将胶囊编码和Swin Transformer联合应用于SAR图像目标识别。该网络集成3个并行的胶囊Swin Transformer编码结构,融合后对输入图像进行分类。每个结构通过基于膨胀卷积切片划分的胶囊令牌编码器和三维胶囊Swin Transformer模块构建,能捕获更深层次、更广泛的语义特征。在运动和静止目标的获取与识别(MSTAR)数据集及FUSAR-Ship数据集上的实验结果表明,MSCSTN在各种测试条件下均优于其他方法。结果表明,MSCSTN展现了良好的识别性能、泛化能力和应用潜力。 展开更多
关键词 膨胀卷积切片分区 胶囊令牌编码器 三维胶囊Swin transformer模块 多尺度胶囊Swin transformer网络 SAR图像目标识别
在线阅读 下载PDF
基于轻量化Transformer的高效图像超分辨率算法研究
12
作者 高翔 王凡 胡小鹏 《大连理工大学学报》 北大核心 2025年第2期212-220,共9页
基于Transformer的算法在图像超分辨率领域取得的重要性能突破,得益于其捕捉图像中长程依赖关系的强大能力.然而,繁重的计算成本和高GPU显存消耗限制了其在实际中的应用,于是提出了一种基于轻量化Transformer的高效图像超分辨率算法——... 基于Transformer的算法在图像超分辨率领域取得的重要性能突破,得益于其捕捉图像中长程依赖关系的强大能力.然而,繁重的计算成本和高GPU显存消耗限制了其在实际中的应用,于是提出了一种基于轻量化Transformer的高效图像超分辨率算法——LISRFormer.该算法引入轻量化Transformer,在捕捉长程依赖关系的同时将复杂度从现有的二次方降为线性.通过跨通道计算交叉协方差,得到可应用于大尺寸图像的转置注意力图.层归一化仅作用于查询和键分支,以保留重要的输入特征.此外,还设计了一种高效门控深度卷积前馈网络(EGDFN),作为Transformer中的前馈网络,进一步恢复准确的纹理信息.在基准数据集上进行的大量定量和定性实验表明,该算法在计算成本和图像重建质量方面优于现有轻量化图像超分辨率算法. 展开更多
关键词 图像超分辨率 transformER 轻量化 注意力
在线阅读 下载PDF
基于对比学习和预训练Transformer的流量隐匿数据检测方法
13
作者 何帅 张京超 +3 位作者 徐笛 江帅 郭晓威 付才 《通信学报》 北大核心 2025年第3期221-233,共13页
为解决海量加密流量难表征、恶意行为难感知以及隐私数据归属难识别的问题,提出了一种基于对比学习和预训练Transformer的流量隐匿数据检测方法。考虑加密流量的高度复杂性、非结构化的特点以及传统下游任务的微调方法在加密流量领域的... 为解决海量加密流量难表征、恶意行为难感知以及隐私数据归属难识别的问题,提出了一种基于对比学习和预训练Transformer的流量隐匿数据检测方法。考虑加密流量的高度复杂性、非结构化的特点以及传统下游任务的微调方法在加密流量领域的效果不佳的挑战,数据报文通过提取数据包序列被转换为类似自然语言处理中的词元。然后利用预训练Transformer模型将浅层表征转换为适用于多种加密流量下游任务的通用流量表征。通过将流量中的隐匿数据检测问题转换为相似性分析问题,基于对比学习的思想设计了一种差异性敏感的Transformer模型架构,同时使用样本的正负样本对增强模型对流量差异性的感知能力,并提出使用信息对比估计作为加密流量下游任务微调的损失函数。实验结果表明,所提方法在检测准确率、精确率、召回率以及F1分数等方面优于主流方法。 展开更多
关键词 流量隐匿数据检测 预训练transformer模型 对比学习 加密流量
在线阅读 下载PDF
基于Swin-AK Transformer的智能手机拍摄图像质量评价方法
14
作者 侯国鹏 董武 +4 位作者 陆利坤 周子镱 马倩 柏振 郑晟辉 《光电工程》 北大核心 2025年第1期116-130,共15页
本文提出了一种基于双交叉注意力融合的Swin-AK Transformer(Swin Transformer based on alterable kernel convolution)和手工特征相结合的智能手机拍摄图像质量评价方法。首先,提取了影响图像质量的手工特征,这些特征可以捕捉到图像... 本文提出了一种基于双交叉注意力融合的Swin-AK Transformer(Swin Transformer based on alterable kernel convolution)和手工特征相结合的智能手机拍摄图像质量评价方法。首先,提取了影响图像质量的手工特征,这些特征可以捕捉到图像中细微的视觉变化;其次,提出了Swin-AK Transformer,增强了模型对局部信息的提取和处理能力。此外,本文设计了双交叉注意力融合模块,结合空间注意力和通道注意力机制,融合了手工特征与深度特征,实现了更加精确的图像质量预测。实验结果表明,在SPAQ和LIVE-C数据集上,皮尔森线性相关系数分别达到0.932和0.885,斯皮尔曼等级排序相关系数分别达到0.929和0.858。上述结果证明了本文提出的方法能够有效地预测智能手机拍摄图像的质量。 展开更多
关键词 图像质量评价 智能手机拍摄图像 Swin transformer 手工特征 空间注意力 通道注意力
在线阅读 下载PDF
USformer-Net:基于U-Net和Swin Transformer的脑部MRI图像质量评价方法
15
作者 李沛钊 王同罕 +1 位作者 贾惠珍 吴通 《现代电子技术》 北大核心 2024年第7期1-7,共7页
针对现有的脑部MRI图像质量评价方法准确率低、难以应用于实际临床环境中的问题,提出一种基于提取感兴趣区域的脑部MRI图像质量自动评价模型USformer-Net,并创建了带有主观质量评价标签的脑部MRI图像数据集。USformer-Net模型基于U-Net... 针对现有的脑部MRI图像质量评价方法准确率低、难以应用于实际临床环境中的问题,提出一种基于提取感兴趣区域的脑部MRI图像质量自动评价模型USformer-Net,并创建了带有主观质量评价标签的脑部MRI图像数据集。USformer-Net模型基于U-Net和Swin Transformer模型构建并针对脑部MRI图像的特殊性进行了改进。首先,利用轻量化的U-Net网络对具有临床诊断价值的大脑主要区域进行分割,提取出感兴趣区域;其次,利用Swin Transformer的串联窗口自注意力运算(W-MSA)、滑动窗口自注意力运算(SW-MSA)以及其特征融合方式,将特征金字塔(FPN)、兴趣区域匹配(ROI Align)及全连接网络(FC)结合在Swin Transformer骨干特征提取网络中进行图像质量评价。USformer-Net模型能够忽略无关噪声,准确提取出影响诊断的主要区域并进行图像质量评价。实验结果表明,在MRI图像质量评价任务中该模型准确率为87.84%,精度为91.84%,召回率为92.05%,F1-score为91.99%,相较于其他评价方法各项指标均有不同程度提升。最终结果显示该模型能够有效保证脑部MRI图像质量评价的准确性,创建的带有主观质量评价标签的数据集也为该领域的研究提供了更好的数据支持。 展开更多
关键词 图像质量评价 脑部MRI图像 深度学习 图像分割 U-net transformER
在线阅读 下载PDF
In situ observation of the phase transformation kinetics of bismuth during shock release
16
作者 李江涛 王倩男 +7 位作者 徐亮 柳雷 张航 Sota Takagi Kouhei Ichiyanagi Ryo Fukaya Shunsuke Nozawa 胡建波 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期586-592,共7页
A time-resolved x-ray diffraction technique is employed to monitor the structural transformation of laser-shocked bismuth.Results reveal a retarded transformation from the shock-induced Bi-Ⅴphase to a metastable Bi-... A time-resolved x-ray diffraction technique is employed to monitor the structural transformation of laser-shocked bismuth.Results reveal a retarded transformation from the shock-induced Bi-Ⅴphase to a metastable Bi-Ⅳphase during the shock release,instead of the thermodynamically stable Bi-Ⅲphase.The emergence of the metastable Bi-Ⅳphase is understood by the competitive interplay between two transformation pathways towards the Bi-Ⅳand Bi-Ⅲ,respectively.The former is more rapid than the latter because the Bi-Ⅴto B-Ⅳtransformation is driven by interaction between the closest atoms while the Bi-Ⅴto B-Ⅲtransformation requires interaction between the second-closest atoms.The nucleation time for the Bi-Ⅴto Bi-Ⅳtransformation is determined to be 5.1±0.9 ns according to a classical nucleation model.This observation demonstrates the importance of the formation of the transient metastable phases,which can change the phase transformation pathway in a dynamic process. 展开更多
关键词 phase transformation time-resolved x-ray diffraction(XRD) BISMUTH metastable phase nonequilibrium phase diagram
在线阅读 下载PDF
Tracking direct and indirect impact on technology and policy of transformative research via ego citation network
17
作者 Xian Li Xiaojun Hu 《Journal of Data and Information Science》 CSCD 2024年第3期65-87,共23页
Purpose:The disseminating of academic knowledge to nonacademic audiences partly relies on the transition of subsequent citing papers.This study aims to investigate direct and indirect impact on technology and policy o... Purpose:The disseminating of academic knowledge to nonacademic audiences partly relies on the transition of subsequent citing papers.This study aims to investigate direct and indirect impact on technology and policy originating from transformative research based on ego citation network.Design/methodology/approach:Key Nobel Prize-winning publications(NPs)in fields of gene engineering and astrophysics are regarded as a proxy for transformative research.In this contribution,we introduce a network-structural indicator of citing patents to measure technological impact of a target article and use policy citations as a preliminary tool for policy impact.Findings:The results show that the impact on technology and policy of NPs are higher than that of their subsequent citation generations in gene engineering but not in astrophysics.Research limitations:The selection of Nobel Prizes is not balanced and the database used in this study,Dimensions,suffers from incompleteness and inaccuracy of citation links.Practical implications:Our findings provide useful clues to better understand the characteristics of transformative research in technological and policy impact.Originality/value:This study proposes a new framework to explore the direct and indirect impact on technology and policy originating from transformative research. 展开更多
关键词 transformative research Nobel Prize winning articles Citation networks Technological impact Policy impact
在线阅读 下载PDF
Target Entrapment Based on Adaptive Transformation of Gene Regulatory Networks
18
作者 Wenji Li Pengxiang Ren +2 位作者 Zhaojun Wang Chaotao Guan Zhun Fan 《Journal of Beijing Institute of Technology》 EI CAS 2024年第5期389-398,共10页
The complexity of unknown scenarios and the dynamics involved in target entrapment make designing control strategies for swarm robots a formidable task,which in turn impacts their efficiency in complex and dynamic set... The complexity of unknown scenarios and the dynamics involved in target entrapment make designing control strategies for swarm robots a formidable task,which in turn impacts their efficiency in complex and dynamic settings.To address these challenges,this paper introduces an adaptive swarm robot entrapment control model grounded in the transformation of gene regulatory networks(AT-GRN).This innovative model enables swarm robots to dynamically adjust entrap-ment strategies by assessing current environmental conditions via real-time sensory data.Further-more,an improved motion control model for swarm robots is designed to dynamically shape the for-mation generated by the AT-GRN.Through two sets of rigorous experimental environments,the proposed model significantly enhances the trapping performance of swarm robots in complex envi-ronments,demonstrating remarkable adaptability and stability. 展开更多
关键词 swarm robots target entrapment adaptive transformation gene regulatory networks
在线阅读 下载PDF
基于Transformer的高光谱图像域适应分类 被引量:1
19
作者 何文强 李照奎 房卓群 《激光杂志》 北大核心 2025年第2期141-148,共8页
针对跨域高光谱图像分类中的光谱偏移和光谱冗余问题,提出了一种基于Transformer的高光谱图像域适应分类方法。该方法结合逐像素高光谱长波段分块策略和基于邻域相关性的中心像元特征提取策略,有效提取高光谱图像中的局部-长程光谱相关... 针对跨域高光谱图像分类中的光谱偏移和光谱冗余问题,提出了一种基于Transformer的高光谱图像域适应分类方法。该方法结合逐像素高光谱长波段分块策略和基于邻域相关性的中心像元特征提取策略,有效提取高光谱图像中的局部-长程光谱相关性特征和中心像元信息,最后通过双分类器架构实现知识的有效迁移。在Houston和YRD数据集上的实验结果证实了所提方法的有效性。本方法的提出为高光谱图像的域适应分类研究提供了新的视角和技术路径。 展开更多
关键词 高光谱图像 遥感 分类 域适应 transformER
在线阅读 下载PDF
一种基于Transformer特征金字塔的自蒸馏目标分割方法
20
作者 陈雷 杨吉斌 +5 位作者 曹铁勇 郑云飞 王杨 张波 林振华 李文斌 《电子与信息学报》 北大核心 2025年第2期551-560,共10页
为在不增加网络参数规模的情况下提升目标分割性能,该文提出一种基于Transformer特征金字塔的自蒸馏目标分割方法,提升了Transformer分割模型的实用性。首先,以Swin Transformer为主干网构建了像素级的目标分割模型;然后,设计了适合Tran... 为在不增加网络参数规模的情况下提升目标分割性能,该文提出一种基于Transformer特征金字塔的自蒸馏目标分割方法,提升了Transformer分割模型的实用性。首先,以Swin Transformer为主干网构建了像素级的目标分割模型;然后,设计了适合Transformer的蒸馏辅助分支,该分支由密集连接空间空洞金字塔(Dense ASPP)、相邻特征融合模块(AFFM)和得分模块构建而成,通过自蒸馏方式指导主干网络学习蒸馏知识;最后,利用自上而下的学习策略指导模型学习,以保证自蒸馏学习的一致性。实验表明,在4个公开数据集上所提方法均能有效提升目标分割精度,在伪装目标检测(COD)数据集上比次优的Transformer知识蒸馏(TKD)方法的Fβ值提高了约2.29%。 展开更多
关键词 自蒸馏 transformER 目标分割 特征金字塔
在线阅读 下载PDF
上一页 1 2 92 下一页 到第
使用帮助 返回顶部