The atmospheric scattering optical transfer function (OTF) is solved by applying the multi-coupled single scattering (MCSS) method to the three-dimensional radiative transfer equation (RTE) under the periodic gr...The atmospheric scattering optical transfer function (OTF) is solved by applying the multi-coupled single scattering (MCSS) method to the three-dimensional radiative transfer equation (RTE) under the periodic ground condition. This approach is a direct hit to the atmospheric scattering OTF using the same original context of modulation transfer function (MTF) measurement, i.e., images of sinusoidal grating at different spatial frequencies. Both the amplitude and phase shift of the OTF at various zenith and azimuth angles can be obtained at an arbitrary spatial frequency.展开更多
Based on the fact that the real inductor and the real capacitor are fractional order in nature and the fractional calculus,the transfer function modeling and analysis of the open-loop Buck converter in a continuous co...Based on the fact that the real inductor and the real capacitor are fractional order in nature and the fractional calculus,the transfer function modeling and analysis of the open-loop Buck converter in a continuous conduction mode(CCM) operation are carried out in this paper.The fractional order small signal model and the corresponding equivalent circuit of the open-loop Buck converter in a CCM operation are presented.The transfer functions from the input voltage to the output voltage,from the input voltage to the inductor current,from the duty cycle to the output voltage,from the duty cycle to the inductor current,and the output impedance of the open-loop Buck converter in CCM operation are derived,and their bode diagrams and step responses are calculated,respectively.It is found that all the derived fractional order transfer functions of the system are influenced by the fractional orders of the inductor and the capacitor.Finally,the realization of the fractional order inductor and the fractional order capacitor is designed,and the corresponding PSIM circuit simulation results of the open-loop Buck converter in CCM operation are given to confirm the correctness of the derivations and the theoretical analysis.展开更多
The resolution characteristic can be obtained by the modulation transfer function (MTF) of a GaAs/GaA1As photocathode. After establishing the theoretical model of GaAs(100)-oriented atomic configuration and the fo...The resolution characteristic can be obtained by the modulation transfer function (MTF) of a GaAs/GaA1As photocathode. After establishing the theoretical model of GaAs(100)-oriented atomic configuration and the formula for the ionized impurity scattering of the non-equilibrium carriers, this paper calculates the trajectories of photoelectrons in a photocathode. Thus the distribution of photoelectron spots on the emit-face is obtained, which is namely the point spread function. The MTF is obtained by Fourier transfer of the line spread function obtained from the point spread function. The MTF obtained from these calculations is shown to depend heavily on the electron diffusion length, and enhanced considerably by decreasing the electron diffusion length and increasing the doping concentration. Furthermore, the resolution is enhanced considerably by increasing the active-layer thickness, especially at high spatial frequencies. The best spatial resolution is 860 lp/mm, for the GaAs photocathode of doping concentration 1 ×10^19 cm 3 electron diffusion length 3.6 μm and the active-layer thickness 2 μm, under the 633-nm light irradiated. This research will contribute to the future improvement of the cathode's resolution for preparing a high performance GaAs photocathode, and improve the resolution of a low light level image intensifier.展开更多
The galvanic coupling intra-body communication (IBC) was mathematically simulated based on the proposed transfer function. Firstly, a galvanic coupling IBC circuit model was developed and the corresponding parameter...The galvanic coupling intra-body communication (IBC) was mathematically simulated based on the proposed transfer function. Firstly, a galvanic coupling IBC circuit model was developed and the corresponding parameters were discussed. Secondly, the transfer function of the galvanic coupling IBC was derived and proposed. Finally, the signal attenuation characteristics of the galvanic coupling IBC were measured along different signal transmission paths of actual human bodies, while the corresponding mathematical simulations based on the proposed transfer function were carried out. Our investigation showed that the mathematical simulation results coincided with the measured results over the frequency range of 100kHz to 5MHz, which indicated that the proposed transfer function could be useful for theoretical analysis and application of the galvanic coupling IBC.展开更多
An optical transfer function (OTF) reconstruction model is first embedded into incoherent Fourier ptychography (IFP). The leading result is a proposed algorithm that can recover both the super-resolution image and...An optical transfer function (OTF) reconstruction model is first embedded into incoherent Fourier ptychography (IFP). The leading result is a proposed algorithm that can recover both the super-resolution image and the OTF of an imaging system with unknown aberrations simultaneously. This model overcomes the difficult problem of OTF estimation that the previous IFP faces. The effectiveness of this algorithm is demonstrated by numerical simulations, and the superior reconstruction is presented. We believe that the reported algorithm can extend the original IFP for more complex conditions and may provide a solution by using structured light for characterization of optical systems' aberrations.展开更多
Based on the suitably defined multivariable version of Kranc operators and the extended input and output vectors, the multirate sampling plant is transformed to a equivalent time invariant single rate one, then the t...Based on the suitably defined multivariable version of Kranc operators and the extended input and output vectors, the multirate sampling plant is transformed to a equivalent time invariant single rate one, then the transfer function model of the multivariable multirate sampling plant is obtained. By combining this plant model with the time invariant description of the multirate controller in terms of extended vectors, the closed loop transfer function model of the multirate feedback control system can be determinated. This transfer function model has a very simple structure, and can be used as a basis for the analysis and synthesis of the multirate sampling feedback control systems in the frequency domain.展开更多
Based on the sampler decomposition method and modified Z transform, this paper proposes a pulse transfer function matrix description of the multivariable multirate sampling systems. This multirate sampling system mode...Based on the sampler decomposition method and modified Z transform, this paper proposes a pulse transfer function matrix description of the multivariable multirate sampling systems. This multirate sampling system model has a simple structure, and can be used as a basis for the analysis and synthesis of the multirate sampling systems.展开更多
A digital transfer function measurement system has been embedded in the low-level radio frequency (LLRF) system of the storage ring of the Shanghai Synchrotron Radiation Facility. The measurement results indicate that...A digital transfer function measurement system has been embedded in the low-level radio frequency (LLRF) system of the storage ring of the Shanghai Synchrotron Radiation Facility. The measurement results indicate that the decreased control accuracy at high current is primarily owing to ripples from the high-voltage power supply, the transient beam loading effect, and the digital aliasing effect. The current LLRF algorithm is not able to suppress these disturbances.展开更多
The modulation of electrical properties of MoS_2 has attracted extensive research interest because of its potential applications in electronic and optoelectronic devices.Herein,interfacial charge transfer induced elec...The modulation of electrical properties of MoS_2 has attracted extensive research interest because of its potential applications in electronic and optoelectronic devices.Herein,interfacial charge transfer induced electronic property tuning of MoS_2 are investigated by in situ ultraviolet photoelectron spectroscopy and x-ray photoelectron spectroscopy measurements.A downward band-bending of MoS_2-related electronic states along with the decreasing work function,which are induced by the electron transfer from Cs overlayers to MoS_2,is observed after the functionalization of MoS_2 with Cs,leading to n-type doping.Meanwhile,when MoS_2 is modified with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane(F_4-TCNQ),an upward band-bending of MoS_2-related electronic states along with the increasing work function is observed at the interfaces.This is attributed to the electron depletion within MoS_2 due to the strong electron withdrawing property of F_4-TCNQ,indicating p-type doping of MoS_2.Our findings reveal that surface transfer doping is an effective approach for electronic property tuning of MoS_2 and paves the way to optimize its performance in electronic and optoelectronic devices.展开更多
基金supported by the Main Direction Program of Knowledge Innovation of Chinese Academy of Sciences(Grant No.KGFZD-125-13-006)
文摘The atmospheric scattering optical transfer function (OTF) is solved by applying the multi-coupled single scattering (MCSS) method to the three-dimensional radiative transfer equation (RTE) under the periodic ground condition. This approach is a direct hit to the atmospheric scattering OTF using the same original context of modulation transfer function (MTF) measurement, i.e., images of sinusoidal grating at different spatial frequencies. Both the amplitude and phase shift of the OTF at various zenith and azimuth angles can be obtained at an arbitrary spatial frequency.
基金Project supported by the National Natural Science Foundation of China (Grant No. 51007068)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100201120028)+2 种基金the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2012JQ7026)the Fundamental Research Funds for the Central Universities of China (Grant No. 2012jdgz09)the State Key Laboratory of Electrical Insulation and Power Equipment of China (Grant No. EIPE12303)
文摘Based on the fact that the real inductor and the real capacitor are fractional order in nature and the fractional calculus,the transfer function modeling and analysis of the open-loop Buck converter in a continuous conduction mode(CCM) operation are carried out in this paper.The fractional order small signal model and the corresponding equivalent circuit of the open-loop Buck converter in a CCM operation are presented.The transfer functions from the input voltage to the output voltage,from the input voltage to the inductor current,from the duty cycle to the output voltage,from the duty cycle to the inductor current,and the output impedance of the open-loop Buck converter in CCM operation are derived,and their bode diagrams and step responses are calculated,respectively.It is found that all the derived fractional order transfer functions of the system are influenced by the fractional orders of the inductor and the capacitor.Finally,the realization of the fractional order inductor and the fractional order capacitor is designed,and the corresponding PSIM circuit simulation results of the open-loop Buck converter in CCM operation are given to confirm the correctness of the derivations and the theoretical analysis.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60678043)the Research and Innovation Plan for Graduate Students of Jiangsu Higher Education Institutions,China (Grant No. CX09B 096Z)
文摘The resolution characteristic can be obtained by the modulation transfer function (MTF) of a GaAs/GaA1As photocathode. After establishing the theoretical model of GaAs(100)-oriented atomic configuration and the formula for the ionized impurity scattering of the non-equilibrium carriers, this paper calculates the trajectories of photoelectrons in a photocathode. Thus the distribution of photoelectron spots on the emit-face is obtained, which is namely the point spread function. The MTF is obtained by Fourier transfer of the line spread function obtained from the point spread function. The MTF obtained from these calculations is shown to depend heavily on the electron diffusion length, and enhanced considerably by decreasing the electron diffusion length and increasing the doping concentration. Furthermore, the resolution is enhanced considerably by increasing the active-layer thickness, especially at high spatial frequencies. The best spatial resolution is 860 lp/mm, for the GaAs photocathode of doping concentration 1 ×10^19 cm 3 electron diffusion length 3.6 μm and the active-layer thickness 2 μm, under the 633-nm light irradiated. This research will contribute to the future improvement of the cathode's resolution for preparing a high performance GaAs photocathode, and improve the resolution of a low light level image intensifier.
基金Supported by the National Natural Science Foundation of China(60801050)the Basic Research Foundation of Beijing Institute of Technology(1010050320804)
文摘The galvanic coupling intra-body communication (IBC) was mathematically simulated based on the proposed transfer function. Firstly, a galvanic coupling IBC circuit model was developed and the corresponding parameters were discussed. Secondly, the transfer function of the galvanic coupling IBC was derived and proposed. Finally, the signal attenuation characteristics of the galvanic coupling IBC were measured along different signal transmission paths of actual human bodies, while the corresponding mathematical simulations based on the proposed transfer function were carried out. Our investigation showed that the mathematical simulation results coincided with the measured results over the frequency range of 100kHz to 5MHz, which indicated that the proposed transfer function could be useful for theoretical analysis and application of the galvanic coupling IBC.
基金Supported by the National Natural Science Foundation of China under Grant No 61205144the Research Project of National University of Defense Technology under Grant No JC13-07-01the Key Laboratory of High Power Laser and Physics of Chinese Academy of Sciences
文摘An optical transfer function (OTF) reconstruction model is first embedded into incoherent Fourier ptychography (IFP). The leading result is a proposed algorithm that can recover both the super-resolution image and the OTF of an imaging system with unknown aberrations simultaneously. This model overcomes the difficult problem of OTF estimation that the previous IFP faces. The effectiveness of this algorithm is demonstrated by numerical simulations, and the superior reconstruction is presented. We believe that the reported algorithm can extend the original IFP for more complex conditions and may provide a solution by using structured light for characterization of optical systems' aberrations.
文摘Based on the suitably defined multivariable version of Kranc operators and the extended input and output vectors, the multirate sampling plant is transformed to a equivalent time invariant single rate one, then the transfer function model of the multivariable multirate sampling plant is obtained. By combining this plant model with the time invariant description of the multirate controller in terms of extended vectors, the closed loop transfer function model of the multirate feedback control system can be determinated. This transfer function model has a very simple structure, and can be used as a basis for the analysis and synthesis of the multirate sampling feedback control systems in the frequency domain.
文摘Based on the sampler decomposition method and modified Z transform, this paper proposes a pulse transfer function matrix description of the multivariable multirate sampling systems. This multirate sampling system model has a simple structure, and can be used as a basis for the analysis and synthesis of the multirate sampling systems.
文摘A digital transfer function measurement system has been embedded in the low-level radio frequency (LLRF) system of the storage ring of the Shanghai Synchrotron Radiation Facility. The measurement results indicate that the decreased control accuracy at high current is primarily owing to ripples from the high-voltage power supply, the transient beam loading effect, and the digital aliasing effect. The current LLRF algorithm is not able to suppress these disturbances.
基金Supported by the National Natural Science Foundation of China (Grant No.22002031)the Natural Science Foundation of Zhejiang Province (Grant No.LY18F010019)the Innovation Project in Hangzhou for Returned Scholar。
文摘The modulation of electrical properties of MoS_2 has attracted extensive research interest because of its potential applications in electronic and optoelectronic devices.Herein,interfacial charge transfer induced electronic property tuning of MoS_2 are investigated by in situ ultraviolet photoelectron spectroscopy and x-ray photoelectron spectroscopy measurements.A downward band-bending of MoS_2-related electronic states along with the decreasing work function,which are induced by the electron transfer from Cs overlayers to MoS_2,is observed after the functionalization of MoS_2 with Cs,leading to n-type doping.Meanwhile,when MoS_2 is modified with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane(F_4-TCNQ),an upward band-bending of MoS_2-related electronic states along with the increasing work function is observed at the interfaces.This is attributed to the electron depletion within MoS_2 due to the strong electron withdrawing property of F_4-TCNQ,indicating p-type doping of MoS_2.Our findings reveal that surface transfer doping is an effective approach for electronic property tuning of MoS_2 and paves the way to optimize its performance in electronic and optoelectronic devices.