The Backscatter communication has gained widespread attention from academia and industry in recent years. In this paper, A method of resource allocation and trajectory optimization is proposed for UAV-assisted backsca...The Backscatter communication has gained widespread attention from academia and industry in recent years. In this paper, A method of resource allocation and trajectory optimization is proposed for UAV-assisted backscatter communication based on user trajectory. This paper will establish an optimization problem of jointly optimizing the UAV trajectories, UAV transmission power and BD scheduling based on the large-scale channel state signals estimated in advance of the known user trajectories, taking into account the constraints of BD data and working energy consumption, to maximize the energy efficiency of the system. The problem is a non-convex optimization problem in fractional form, and there is nonlinear coupling between optimization variables.An iterative algorithm is proposed based on Dinkelbach algorithm, block coordinate descent method and continuous convex optimization technology. First, the objective function is converted into a non-fractional programming problem based on Dinkelbach method,and then the block coordinate descent method is used to decompose the original complex problem into three independent sub-problems. Finally, the successive convex approximation method is used to solve the trajectory optimization sub-problem. The simulation results show that the proposed scheme and algorithm have obvious energy efficiency gains compared with the comparison scheme.展开更多
The longitudinal dispersion of the projectile in shooting tests of two-dimensional trajectory corrections fused with fixed canards is extremely large that it sometimes exceeds the correction ability of the correction ...The longitudinal dispersion of the projectile in shooting tests of two-dimensional trajectory corrections fused with fixed canards is extremely large that it sometimes exceeds the correction ability of the correction fuse actuator.The impact point easily deviates from the target,and thus the correction result cannot be readily evaluated.However,the cost of shooting tests is considerably high to conduct many tests for data collection.To address this issue,this study proposes an aiming method for shooting tests based on small sample size.The proposed method uses the Bootstrap method to expand the test data;repeatedly iterates and corrects the position of the simulated theoretical impact points through an improved compatibility test method;and dynamically adjusts the weight of the prior distribution of simulation results based on Kullback-Leibler divergence,which to some extent avoids the real data being"submerged"by the simulation data and achieves the fusion Bayesian estimation of the dispersion center.The experimental results show that when the simulation accuracy is sufficiently high,the proposed method yields a smaller mean-square deviation in estimating the dispersion center and higher shooting accuracy than those of the three comparison methods,which is more conducive to reflecting the effect of the control algorithm and facilitating test personnel to iterate their proposed structures and algorithms.;in addition,this study provides a knowledge base for further comprehensive studies in the future.展开更多
We present a formulation of the single-trajectory entropy using the trajectories ensemble. The single-trajectory entropy is affected by its surrounding trajectories via the distribution function. The single-trajectory...We present a formulation of the single-trajectory entropy using the trajectories ensemble. The single-trajectory entropy is affected by its surrounding trajectories via the distribution function. The single-trajectory entropies are studied in two typical potentials, i.e., harmonic potential and double-well potential, and in viscous environment by interacting trajectory method. The results of the trajectory methods are in agreement well with the numerical methods(Monte Carlo simulation and difference equation). The single-trajectory entropies increasing(decreasing) could be caused by absorption(emission) heat from(to) the thermal environment. Also, some interesting trajectories, which correspond to the rare evens in the processes, are demonstrated.展开更多
The novel aircraft engine-off taxi towing system featuring aircraft power integration has demonstrated significant advantages,including reduced energy consumption,diminished emissions,and enhanced efficiency.However,t...The novel aircraft engine-off taxi towing system featuring aircraft power integration has demonstrated significant advantages,including reduced energy consumption,diminished emissions,and enhanced efficiency.However,the aircraft engine-off taxi towing system lacks the consideration of attendant constraints in the trajectory generation process,which can potentially lead to ground accidents and constrain the improvement of traction speed.Addressing this challenge,the present work investigates the optimal control problem of trajectory generation for the taxiing traction system in the complex stochastic environment in the airport flight area.For the stochastic constraints,a strategy of deterministic processing is proposed to describe the stochastic constraints using random constraints.Furthermore,an adaptive pseudo-spectral method is introduced to transform the optimal control problem into a nonlinear programming problem,enabling its effective resolution.Simulation results substantiate that the generated trajectory can efficiently handle the stochastic constraints and accomplish the given task towards the time-optimization objective,thereby effectively enhancing the stability and efficiency of the taxiing traction system,ensuring the safety of the aircraft system,and improving the ground access capacity and efficiency of the airport.展开更多
Motion planning and control of autonomous mobile robots(AMRs)have attracted widespread attention in recent years.As the problem of aging intensifies,it is significant to develop AMRs for the wellbeing of old people.In...Motion planning and control of autonomous mobile robots(AMRs)have attracted widespread attention in recent years.As the problem of aging intensifies,it is significant to develop AMRs for the wellbeing of old people.In this paper,a novel long short-term memory(LSTM)-recurrent deep neural network(RDNN)based motion planning and control strategy with data aggregation mechanism is developed for autonomous wheelchairs(AWC)to send the seniors to the exit of the nursing home in a timely manner when emergencies happen.The proposed scheme is verified to be feasible,efficient and robust.展开更多
To enhance the stability of helicopter maneuvers during task execution,a composite trajectory tracking controller design based on the implicit model(IM)and linear active disturbance rejection control(LADRC)is proposed...To enhance the stability of helicopter maneuvers during task execution,a composite trajectory tracking controller design based on the implicit model(IM)and linear active disturbance rejection control(LADRC)is proposed.Initially,aerodynamic models of the main and tail rotor are created using the blade element theory and the uniform inflow assumption.Subsequently,a comprehensive flight dynamic model of the helicopter is established through fitting aerodynamic force fitting.Subsequently,for precise helicopter maneuvering,including the spiral,spiral up,and Ranversman maneuver,a regular trim is undertaken,followed by minor perturbation linearization at the trim point.Utilizing the linearized model,controllers are created for the IM attitude inner loop and LADRC position outer loop of the helicopter.Ultimately,a comparison is made between the maneuver trajectory tracking results of the IM‑LADRC and the conventional proportional-integral-derivative(PID)control method is performed.Experimental results demonstrate that utilizing the post-trim minor perturbation linearized model in combination with the IM‑LADRC method can achieve higher precision in tracking results,thus enhancing the accuracy of helicopter maneuver execution.展开更多
A cooperative passive sensing framework for millimeter wave(mmWave)communication systems is proposed and demonstrated in a scenario with one mobile signal blocker.Specifically,in the uplink communication with at least...A cooperative passive sensing framework for millimeter wave(mmWave)communication systems is proposed and demonstrated in a scenario with one mobile signal blocker.Specifically,in the uplink communication with at least two transmitters,a cooperative detection method is proposed for the receiver to track the blocker’s trajectory,localize the transmitters and detect the potential link blockage jointly.To facilitate detection,the receiver collects the signal of each transmitter along a line-of-sight(LoS)path and a non-line-of-sight(NLoS)path separately via two narrow-beam phased arrays.The NLoS path involves scattering at the mobile blocker,allowing its identification through the Doppler frequency.By comparing the received signals of both paths,the Doppler frequency and angle-of-arrival(AoA)of the NLoS path can be estimated.To resolve the blocker’s trajectory and the transmitters’locations,the receiver should continuously track the mobile blocker to accumulate sufficient numbers of the Doppler frequency and AoA versus time observations.Finally,a gradient-descent-based algorithm is proposed for joint detection.With the reconstructed trajectory,the potential link blockage can be predicted.It is demonstrated that the system can achieve decimeterlevel localization and trajectory estimation,and predict the blockage time with an error of less than 0.1 s.展开更多
Four-dimensional trajectory based operation(4D-TBO)is believed to enhance the planning and execution of efficient flights,reduce potential conflicts and resolve upcoming tremendous flight demand.Most of the 4D traject...Four-dimensional trajectory based operation(4D-TBO)is believed to enhance the planning and execution of efficient flights,reduce potential conflicts and resolve upcoming tremendous flight demand.Most of the 4D trajectory planning related studies have focused on manned aircraft instead of unmanned aerial vehicles(UAVs).This paper focuses on planning conflict-free 4D trajectories for fixed-wing UAVs before the departure or during the flight planning.A 4D trajectory generation technique based on Tau theory is developed,which can incorporate the time constraints over the waypoint sequence in the flight plan.Then the 4D trajectory is optimized by the particle swarm optimization(PSO)algorithm.Further simulations are performed to demonstrate the effectiveness of the proposed method,which would offer a good chance for integrating UAV into civil airspace in the future.展开更多
Trajectory provides the most robust feature for activity recognition in far-field surveillance videos,in which increasing attentions have been given to the use of qualitative methods with symbolic rather than real-val...Trajectory provides the most robust feature for activity recognition in far-field surveillance videos,in which increasing attentions have been given to the use of qualitative methods with symbolic rather than real-value features.Qualitative trajectory calculus(QTC)showed a good performance in pair-activity from video.However,QTC and similar works are not good at dealing with noise,since they are all considering short-term features.To deal with the problems mentioned above,two types of long-term features,including sub-trajectory feature and point-trajectory feature,are designed.The sub-trajectory feature is a long-term feature in a coarse granularity,while the point-trajectory feature is a long-term feature in a relatively fine granularity.Using the sub-trajectory feature,a couple of trajectories are segmented into sub-trajectories and enveloping boxes are used to substitute the original sub-trajectory for capturing the major attributes.The point-trajectory feature describes the relationship between a single point in one trajectory and all parts of the other trajectory.The experiments on the human activity classification data demonstrated that our proposed methods are better than the original QTC and previous short-term features.展开更多
A point-to-point iterative learning control method with the current-cycle feedback is proposed to enable aircraft to achieve an accurate four-dimensional(4D) trajectory tracking. To this end,the 4D trajectory tracking...A point-to-point iterative learning control method with the current-cycle feedback is proposed to enable aircraft to achieve an accurate four-dimensional(4D) trajectory tracking. To this end,the 4D trajectory tracking control problem is formulated into a point-to-point tracking control issue with an external disturbance. Then,the optimal point-to-point iterative learning control law is derived based on the successive projection method. Further,the current-cycle feedback error is added to the control law,so that the tracking error is reduced in both time and iteration domains. Finally,a numerical simulation is carried out using the kinematic model of an unmanned aerial vehicle and 4D trajectory data. Obtained results demonstrate that the proposed method can quickly reduce the trajectory tracking error even in the presence of gust interferences. Compared with the commonly used average velocity method and the velocity correction method,the proposed method makes full use of the past and current running data,and can continuously improve the accuracy of 4D trajectory tracking with the repetitive operation of aircraft between city pairs.展开更多
The principle of direct method used in optimal control problem is introduced. Details of applying this method to flight trajectory generation are presented including calculation of velocity and controls histories. And...The principle of direct method used in optimal control problem is introduced. Details of applying this method to flight trajectory generation are presented including calculation of velocity and controls histories. And capabilities of flight and propulsion systems are considered also. Combined with digital terrain map technique, the direct method is applied to the three dimensional trajectory optimization for low altitude penetration, and simplex algorithm is used to solve the parameters in optimization. For the small number of parameters, the trajectory can be optimized in real time on board.展开更多
Compared with the one-dimensional trajectory correction technology which adjusts longitudinal range, not only does the two-dimensional trajectory correction technology adjust the force in velocity direction, but also ...Compared with the one-dimensional trajectory correction technology which adjusts longitudinal range, not only does the two-dimensional trajectory correction technology adjust the force in velocity direction, but also need to modulate the lateral force or trajectory (perpendicular to the vertical plane of fire direction). Therefore, the structure of control cabin of two-dimensional trajectory correction projectile (TDTCP) is more complicated than that of one-dimensional trajectory correction projectile (ODTCP). To simplify the structure of control cabin of TDTCP and reduce the cost, a scheme of adding a damping disk to the control cabin of ODTCP has been developed recently. The damping disk is unfolded at the right moment during its flight to change the ballistic drift of spin stabilized projectile. For this technical scheme of TDTCP, a fast and accurate impact point prediction method based on extended Kalman filter is presented. An approximate formula for predicting the ballistic drift and trajectory correction quantity is deduced. And the lateral correction capability for different fire angles and its influencing factors are analyzed. All the work is valuable for further research.展开更多
The two-dimensional trajectory correction needs to adjust not only the force in velocity direction,but also the lateral force or lateral trajectory (normal to the perpendicular plane of fire direction) . Therefore,its...The two-dimensional trajectory correction needs to adjust not only the force in velocity direction,but also the lateral force or lateral trajectory (normal to the perpendicular plane of fire direction) . Therefore,its structure of control cabin is more complicated than that of one-dimensional trajectory correction projectiles (ODTCP). In order to simplify the structure and reduce the cost,a scheme of adding a damping disc to the control cabin of ODTCP has been developed recently. The damping disc will unfold at the right moment during its flight to change the ballistic drift of rotary projectiles. Aimed at this technical scheme,a mathematical model of two-dimensional trajectory corrections was discussed according to the theory of exterior ballistics. An approximate formula for predicting the ballistic drift and trajectory correction was deduced. The capability of lateral trajectory correction and the flight stability of TDTCP were also analyzed. All the work is valuable for further research.展开更多
The optimization method of the canard trajectory correction fuze's controlled trajectory phase is researched by using the aerodynamics of aerocraft and the optimal control theory, the trajectory parameters of the ...The optimization method of the canard trajectory correction fuze's controlled trajectory phase is researched by using the aerodynamics of aerocraft and the optimal control theory, the trajectory parameters of the controlled trajectory phase based on the least energy cost are determined. On the basis of determining the control starting point and the target point, the optimal trajectory and the variation rule of the normal overload with the least energy cost are provided, when there is no time restriction in the simulation process. The results provide a theoretical basis for the structure design of the canard mechanism.展开更多
A movement law of laser beam facula is designed for the injection trajectory of hyper-ve- locity kinetic energy missile to eliminate the influence of motor exhaust smoke on laser signal trans mission. Taking guidance...A movement law of laser beam facula is designed for the injection trajectory of hyper-ve- locity kinetic energy missile to eliminate the influence of motor exhaust smoke on laser signal trans mission. Taking guidance loop of hyper velocity kinetic energy missile as plant, a closed loop control system with desired step response characteristics is constructed and the movement law of laser beam facula for the missile injection trajectory is designed based on the output signal of the closed loop controller under a step input. Six degree of freedom trajectory simulations show that by the guidance of the laser beam facula moving with designed law, the missile can finish transition from the initial trajectory to a stable tracking trajectory without overshoot within the required time.展开更多
The clustering of trajectories over huge volumes of streaming data has been rec- ognized as critical for many modem applica- tions. In this work, we propose a continuous clustering of trajectories of moving objects ov...The clustering of trajectories over huge volumes of streaming data has been rec- ognized as critical for many modem applica- tions. In this work, we propose a continuous clustering of trajectories of moving objects over high speed data streams, which updates online trajectory clusters on basis of incremental line- segment clustering. The proposed clustering algorithm obtains trajectory clusters efficiently and stores all closed trajectory clusters in a bi- tree index with efficient search capability. Next, we present two query processing methods by utilising three proposed pruning strategies to fast handle two continuous spatio-temporal queries, threshold-based trajectory clustering queries and threshold-based trajectory outlier detections. Finally, the comprehensive experi- mental studies demonstrate that our algorithm achieves excellent effectiveness and high effi- ciency for continuous clustering on both syn- thetic and real streaming data, and the propo- sed query processing methods utilise average 90% less time than the naive query methods.展开更多
Based on the mechanical model of an elastic rod,a new trajectory design method was established.The advantages of the suspender line trajectory in reducing drag and torsion were compared,and the main controlling factor...Based on the mechanical model of an elastic rod,a new trajectory design method was established.The advantages of the suspender line trajectory in reducing drag and torsion were compared,and the main controlling factors of drag and torque and their influence rules were analyzed.Research shows that the suspender line trajectory reduces drag and torque more effectively than the conventional trajectory in a certain parameter interval and has more controllable parameters than that of the catenary trajectory.The main factors affecting the drag reduction and torque reduction of the suspender line trajectory include the friction coefficient,vertical distance,horizontal distance,and deviation angle at the initial point in the suspended section.The larger the friction coefficient and deviation angle,the less the drag reduction and torque reduction.The suspender line trajectory has the best drag reduction effect when the horizontal and vertical distances are more than 3000 m and the ratio is close to 1.5.The drag in sliding drilling can be reduced up to 60%,and the torque in rotary drilling can be reduced by a maximum of 40%.Therefore,the trajectory design of the suspender line has unique application prospects in deep extended-reach wells.展开更多
The cutting process of electroplated diamond wire saw was researched on the basis of impulse and vibration machining theories. The different contact states in the cutting process were analyzed by using the finite elem...The cutting process of electroplated diamond wire saw was researched on the basis of impulse and vibration machining theories. The different contact states in the cutting process were analyzed by using the finite element method. It shows that the cutting stress is uniformly distributed along the direction of the workpiece width in the steady state. A mathematical equation of sawing trajectory was established by using the superposition principle and the cutting experiment of wire saw to calculate the cutting trajectory. The comparison of the theoretical trajectory with the calculated one indicates that the error is less than 15%. The research results provide a theoretic basis for optimization of the saw's cutting process parameters.展开更多
To further promote the achievable average secrecy rate for UAV-ground communications, a UAV-aided mobile jamming strategy was proposed in this paper. Specifically, an additional cooperative UAV is employed as a mobile...To further promote the achievable average secrecy rate for UAV-ground communications, a UAV-aided mobile jamming strategy was proposed in this paper. Specifically, an additional cooperative UAV is employed as a mobile jammer to transmit the jamming signal to help keep the source UAV closer to the ground destination, thus establishing more favorable legitimate link and enhancing the secrecy performance. We aimed to maximize the achievable secrecy rate by jointly optimizing the trajectories and transmit power of both source UAV and jammer UAV. To solve the considered non-convex optimization problem, we presented a block coordinate descent based iterative algorithm to address a sequence of approximated convex problems for the optimized parameter block by block to find a local optimal solution. Numerical results verify that the proposed algorithm can achieve significant secrecy rate gain compared to all the benchmark schemes.展开更多
Wireless communication with unmanned aerial vehicles(UAVs) has aroused great research interest recently. This paper is concerned with the UAV's trajectory planning problem for secrecy energy efficiency maximizatio...Wireless communication with unmanned aerial vehicles(UAVs) has aroused great research interest recently. This paper is concerned with the UAV's trajectory planning problem for secrecy energy efficiency maximization(SEEM) in the UAV communication system. Specifically, we jointly consider the secrecy throughput and UAV's energy consumption in a three-node(fixed-wing UAV-aided source, destination, and eavesdropper) wiretap channel. By ignoring the energy consumption on radiation and signal processing, the system's secrecy energy efficiency is defined as the total secrecy rate normalized by the UAV's propulsion energy consumption within a given time horizon. Nonetheless, the SEEM problem is nonconvex and thus is intractable to solve. As a compromise, we propose an iterative algorithm based on sequential convex programming(SCP) and Dinkelbach's method to seek a suboptimal solution for SEEM. The algorithm only needs to solve convex problems, and thus is computationally efficient to implement. Additionally, we prove that the proposed algorithm has Karush-KuhnTucker(KKT) point convergence guarantee. Lastly, simulation results demonstrate the efficacy of our proposed algorithm in improving the secrecy energy efficiency for the UAV communication system.展开更多
文摘The Backscatter communication has gained widespread attention from academia and industry in recent years. In this paper, A method of resource allocation and trajectory optimization is proposed for UAV-assisted backscatter communication based on user trajectory. This paper will establish an optimization problem of jointly optimizing the UAV trajectories, UAV transmission power and BD scheduling based on the large-scale channel state signals estimated in advance of the known user trajectories, taking into account the constraints of BD data and working energy consumption, to maximize the energy efficiency of the system. The problem is a non-convex optimization problem in fractional form, and there is nonlinear coupling between optimization variables.An iterative algorithm is proposed based on Dinkelbach algorithm, block coordinate descent method and continuous convex optimization technology. First, the objective function is converted into a non-fractional programming problem based on Dinkelbach method,and then the block coordinate descent method is used to decompose the original complex problem into three independent sub-problems. Finally, the successive convex approximation method is used to solve the trajectory optimization sub-problem. The simulation results show that the proposed scheme and algorithm have obvious energy efficiency gains compared with the comparison scheme.
基金the National Natural Science Foundation of China(Grant No.61973033)Preliminary Research of Equipment(Grant No.9090102010305)for funding the experiments。
文摘The longitudinal dispersion of the projectile in shooting tests of two-dimensional trajectory corrections fused with fixed canards is extremely large that it sometimes exceeds the correction ability of the correction fuse actuator.The impact point easily deviates from the target,and thus the correction result cannot be readily evaluated.However,the cost of shooting tests is considerably high to conduct many tests for data collection.To address this issue,this study proposes an aiming method for shooting tests based on small sample size.The proposed method uses the Bootstrap method to expand the test data;repeatedly iterates and corrects the position of the simulated theoretical impact points through an improved compatibility test method;and dynamically adjusts the weight of the prior distribution of simulation results based on Kullback-Leibler divergence,which to some extent avoids the real data being"submerged"by the simulation data and achieves the fusion Bayesian estimation of the dispersion center.The experimental results show that when the simulation accuracy is sufficiently high,the proposed method yields a smaller mean-square deviation in estimating the dispersion center and higher shooting accuracy than those of the three comparison methods,which is more conducive to reflecting the effect of the control algorithm and facilitating test personnel to iterate their proposed structures and algorithms.;in addition,this study provides a knowledge base for further comprehensive studies in the future.
基金supported by the National Natural Science Foundation of China (Grant No. 12234013)the Natural Science Foundation of Shandong Province (Grant No. ZR2021LLZ009)。
文摘We present a formulation of the single-trajectory entropy using the trajectories ensemble. The single-trajectory entropy is affected by its surrounding trajectories via the distribution function. The single-trajectory entropies are studied in two typical potentials, i.e., harmonic potential and double-well potential, and in viscous environment by interacting trajectory method. The results of the trajectory methods are in agreement well with the numerical methods(Monte Carlo simulation and difference equation). The single-trajectory entropies increasing(decreasing) could be caused by absorption(emission) heat from(to) the thermal environment. Also, some interesting trajectories, which correspond to the rare evens in the processes, are demonstrated.
基金supported by the Fundamental Research Funds for the Central Universities(No.3122024QD06)。
文摘The novel aircraft engine-off taxi towing system featuring aircraft power integration has demonstrated significant advantages,including reduced energy consumption,diminished emissions,and enhanced efficiency.However,the aircraft engine-off taxi towing system lacks the consideration of attendant constraints in the trajectory generation process,which can potentially lead to ground accidents and constrain the improvement of traction speed.Addressing this challenge,the present work investigates the optimal control problem of trajectory generation for the taxiing traction system in the complex stochastic environment in the airport flight area.For the stochastic constraints,a strategy of deterministic processing is proposed to describe the stochastic constraints using random constraints.Furthermore,an adaptive pseudo-spectral method is introduced to transform the optimal control problem into a nonlinear programming problem,enabling its effective resolution.Simulation results substantiate that the generated trajectory can efficiently handle the stochastic constraints and accomplish the given task towards the time-optimization objective,thereby effectively enhancing the stability and efficiency of the taxiing traction system,ensuring the safety of the aircraft system,and improving the ground access capacity and efficiency of the airport.
基金supported by the Sanming Project of Medicine in Shenzhen(No.SZSM202111001)。
文摘Motion planning and control of autonomous mobile robots(AMRs)have attracted widespread attention in recent years.As the problem of aging intensifies,it is significant to develop AMRs for the wellbeing of old people.In this paper,a novel long short-term memory(LSTM)-recurrent deep neural network(RDNN)based motion planning and control strategy with data aggregation mechanism is developed for autonomous wheelchairs(AWC)to send the seniors to the exit of the nursing home in a timely manner when emergencies happen.The proposed scheme is verified to be feasible,efficient and robust.
基金supported in part by the National Natural Science Foundation of China(No.12032012)the Key Discipline Construction Project of Colleges and Universities in Jiangsu Province.
文摘To enhance the stability of helicopter maneuvers during task execution,a composite trajectory tracking controller design based on the implicit model(IM)and linear active disturbance rejection control(LADRC)is proposed.Initially,aerodynamic models of the main and tail rotor are created using the blade element theory and the uniform inflow assumption.Subsequently,a comprehensive flight dynamic model of the helicopter is established through fitting aerodynamic force fitting.Subsequently,for precise helicopter maneuvering,including the spiral,spiral up,and Ranversman maneuver,a regular trim is undertaken,followed by minor perturbation linearization at the trim point.Utilizing the linearized model,controllers are created for the IM attitude inner loop and LADRC position outer loop of the helicopter.Ultimately,a comparison is made between the maneuver trajectory tracking results of the IM‑LADRC and the conventional proportional-integral-derivative(PID)control method is performed.Experimental results demonstrate that utilizing the post-trim minor perturbation linearized model in combination with the IM‑LADRC method can achieve higher precision in tracking results,thus enhancing the accuracy of helicopter maneuver execution.
文摘A cooperative passive sensing framework for millimeter wave(mmWave)communication systems is proposed and demonstrated in a scenario with one mobile signal blocker.Specifically,in the uplink communication with at least two transmitters,a cooperative detection method is proposed for the receiver to track the blocker’s trajectory,localize the transmitters and detect the potential link blockage jointly.To facilitate detection,the receiver collects the signal of each transmitter along a line-of-sight(LoS)path and a non-line-of-sight(NLoS)path separately via two narrow-beam phased arrays.The NLoS path involves scattering at the mobile blocker,allowing its identification through the Doppler frequency.By comparing the received signals of both paths,the Doppler frequency and angle-of-arrival(AoA)of the NLoS path can be estimated.To resolve the blocker’s trajectory and the transmitters’locations,the receiver should continuously track the mobile blocker to accumulate sufficient numbers of the Doppler frequency and AoA versus time observations.Finally,a gradient-descent-based algorithm is proposed for joint detection.With the reconstructed trajectory,the potential link blockage can be predicted.It is demonstrated that the system can achieve decimeterlevel localization and trajectory estimation,and predict the blockage time with an error of less than 0.1 s.
文摘Four-dimensional trajectory based operation(4D-TBO)is believed to enhance the planning and execution of efficient flights,reduce potential conflicts and resolve upcoming tremendous flight demand.Most of the 4D trajectory planning related studies have focused on manned aircraft instead of unmanned aerial vehicles(UAVs).This paper focuses on planning conflict-free 4D trajectories for fixed-wing UAVs before the departure or during the flight planning.A 4D trajectory generation technique based on Tau theory is developed,which can incorporate the time constraints over the waypoint sequence in the flight plan.Then the 4D trajectory is optimized by the particle swarm optimization(PSO)algorithm.Further simulations are performed to demonstrate the effectiveness of the proposed method,which would offer a good chance for integrating UAV into civil airspace in the future.
基金Supported by the National Natural Science Foundation of China(61502198)
文摘Trajectory provides the most robust feature for activity recognition in far-field surveillance videos,in which increasing attentions have been given to the use of qualitative methods with symbolic rather than real-value features.Qualitative trajectory calculus(QTC)showed a good performance in pair-activity from video.However,QTC and similar works are not good at dealing with noise,since they are all considering short-term features.To deal with the problems mentioned above,two types of long-term features,including sub-trajectory feature and point-trajectory feature,are designed.The sub-trajectory feature is a long-term feature in a coarse granularity,while the point-trajectory feature is a long-term feature in a relatively fine granularity.Using the sub-trajectory feature,a couple of trajectories are segmented into sub-trajectories and enveloping boxes are used to substitute the original sub-trajectory for capturing the major attributes.The point-trajectory feature describes the relationship between a single point in one trajectory and all parts of the other trajectory.The experiments on the human activity classification data demonstrated that our proposed methods are better than the original QTC and previous short-term features.
基金supported by the Fundamental Research Funds for the Central Universities(No. 3122019131)。
文摘A point-to-point iterative learning control method with the current-cycle feedback is proposed to enable aircraft to achieve an accurate four-dimensional(4D) trajectory tracking. To this end,the 4D trajectory tracking control problem is formulated into a point-to-point tracking control issue with an external disturbance. Then,the optimal point-to-point iterative learning control law is derived based on the successive projection method. Further,the current-cycle feedback error is added to the control law,so that the tracking error is reduced in both time and iteration domains. Finally,a numerical simulation is carried out using the kinematic model of an unmanned aerial vehicle and 4D trajectory data. Obtained results demonstrate that the proposed method can quickly reduce the trajectory tracking error even in the presence of gust interferences. Compared with the commonly used average velocity method and the velocity correction method,the proposed method makes full use of the past and current running data,and can continuously improve the accuracy of 4D trajectory tracking with the repetitive operation of aircraft between city pairs.
文摘The principle of direct method used in optimal control problem is introduced. Details of applying this method to flight trajectory generation are presented including calculation of velocity and controls histories. And capabilities of flight and propulsion systems are considered also. Combined with digital terrain map technique, the direct method is applied to the three dimensional trajectory optimization for low altitude penetration, and simplex algorithm is used to solve the parameters in optimization. For the small number of parameters, the trajectory can be optimized in real time on board.
文摘Compared with the one-dimensional trajectory correction technology which adjusts longitudinal range, not only does the two-dimensional trajectory correction technology adjust the force in velocity direction, but also need to modulate the lateral force or trajectory (perpendicular to the vertical plane of fire direction). Therefore, the structure of control cabin of two-dimensional trajectory correction projectile (TDTCP) is more complicated than that of one-dimensional trajectory correction projectile (ODTCP). To simplify the structure of control cabin of TDTCP and reduce the cost, a scheme of adding a damping disk to the control cabin of ODTCP has been developed recently. The damping disk is unfolded at the right moment during its flight to change the ballistic drift of spin stabilized projectile. For this technical scheme of TDTCP, a fast and accurate impact point prediction method based on extended Kalman filter is presented. An approximate formula for predicting the ballistic drift and trajectory correction quantity is deduced. And the lateral correction capability for different fire angles and its influencing factors are analyzed. All the work is valuable for further research.
文摘The two-dimensional trajectory correction needs to adjust not only the force in velocity direction,but also the lateral force or lateral trajectory (normal to the perpendicular plane of fire direction) . Therefore,its structure of control cabin is more complicated than that of one-dimensional trajectory correction projectiles (ODTCP). In order to simplify the structure and reduce the cost,a scheme of adding a damping disc to the control cabin of ODTCP has been developed recently. The damping disc will unfold at the right moment during its flight to change the ballistic drift of rotary projectiles. Aimed at this technical scheme,a mathematical model of two-dimensional trajectory corrections was discussed according to the theory of exterior ballistics. An approximate formula for predicting the ballistic drift and trajectory correction was deduced. The capability of lateral trajectory correction and the flight stability of TDTCP were also analyzed. All the work is valuable for further research.
文摘The optimization method of the canard trajectory correction fuze's controlled trajectory phase is researched by using the aerodynamics of aerocraft and the optimal control theory, the trajectory parameters of the controlled trajectory phase based on the least energy cost are determined. On the basis of determining the control starting point and the target point, the optimal trajectory and the variation rule of the normal overload with the least energy cost are provided, when there is no time restriction in the simulation process. The results provide a theoretical basis for the structure design of the canard mechanism.
文摘A movement law of laser beam facula is designed for the injection trajectory of hyper-ve- locity kinetic energy missile to eliminate the influence of motor exhaust smoke on laser signal trans mission. Taking guidance loop of hyper velocity kinetic energy missile as plant, a closed loop control system with desired step response characteristics is constructed and the movement law of laser beam facula for the missile injection trajectory is designed based on the output signal of the closed loop controller under a step input. Six degree of freedom trajectory simulations show that by the guidance of the laser beam facula moving with designed law, the missile can finish transition from the initial trajectory to a stable tracking trajectory without overshoot within the required time.
基金supported by the National Natural Science Foundation of China under Grants No.61172049,No.61003251the National High Technology Research and Development Program of China(863 Program)under Grant No.2011AA040101the Doctoral Fund of Ministry of Education of Chinaunder Grant No.20100006110015
文摘The clustering of trajectories over huge volumes of streaming data has been rec- ognized as critical for many modem applica- tions. In this work, we propose a continuous clustering of trajectories of moving objects over high speed data streams, which updates online trajectory clusters on basis of incremental line- segment clustering. The proposed clustering algorithm obtains trajectory clusters efficiently and stores all closed trajectory clusters in a bi- tree index with efficient search capability. Next, we present two query processing methods by utilising three proposed pruning strategies to fast handle two continuous spatio-temporal queries, threshold-based trajectory clustering queries and threshold-based trajectory outlier detections. Finally, the comprehensive experi- mental studies demonstrate that our algorithm achieves excellent effectiveness and high effi- ciency for continuous clustering on both syn- thetic and real streaming data, and the propo- sed query processing methods utilise average 90% less time than the naive query methods.
基金Supported by the National Science and Technology Major Project(2016ZX05060-014)PetroChina Major Science and Technology Project(ZD2019-183-005)。
文摘Based on the mechanical model of an elastic rod,a new trajectory design method was established.The advantages of the suspender line trajectory in reducing drag and torsion were compared,and the main controlling factors of drag and torque and their influence rules were analyzed.Research shows that the suspender line trajectory reduces drag and torque more effectively than the conventional trajectory in a certain parameter interval and has more controllable parameters than that of the catenary trajectory.The main factors affecting the drag reduction and torque reduction of the suspender line trajectory include the friction coefficient,vertical distance,horizontal distance,and deviation angle at the initial point in the suspended section.The larger the friction coefficient and deviation angle,the less the drag reduction and torque reduction.The suspender line trajectory has the best drag reduction effect when the horizontal and vertical distances are more than 3000 m and the ratio is close to 1.5.The drag in sliding drilling can be reduced up to 60%,and the torque in rotary drilling can be reduced by a maximum of 40%.Therefore,the trajectory design of the suspender line has unique application prospects in deep extended-reach wells.
基金Sponsored by Innovation team item fund of Liaoning Province ( 2008T164)
文摘The cutting process of electroplated diamond wire saw was researched on the basis of impulse and vibration machining theories. The different contact states in the cutting process were analyzed by using the finite element method. It shows that the cutting stress is uniformly distributed along the direction of the workpiece width in the steady state. A mathematical equation of sawing trajectory was established by using the superposition principle and the cutting experiment of wire saw to calculate the cutting trajectory. The comparison of the theoretical trajectory with the calculated one indicates that the error is less than 15%. The research results provide a theoretic basis for optimization of the saw's cutting process parameters.
基金partly supported by National Natural Science Foundation of China (No. 41504026, 61362009)Natural Science Foundation of Jiangxi (No.20152ACB21003)Foundation for Distinguished Young Talents Training Programme of Jiangxi (No.20171BCB23006)
文摘To further promote the achievable average secrecy rate for UAV-ground communications, a UAV-aided mobile jamming strategy was proposed in this paper. Specifically, an additional cooperative UAV is employed as a mobile jammer to transmit the jamming signal to help keep the source UAV closer to the ground destination, thus establishing more favorable legitimate link and enhancing the secrecy performance. We aimed to maximize the achievable secrecy rate by jointly optimizing the trajectories and transmit power of both source UAV and jammer UAV. To solve the considered non-convex optimization problem, we presented a block coordinate descent based iterative algorithm to address a sequence of approximated convex problems for the optimized parameter block by block to find a local optimal solution. Numerical results verify that the proposed algorithm can achieve significant secrecy rate gain compared to all the benchmark schemes.
基金supported in part by the National Natural Science Foundation of China under Grant 61631004 and 61571089
文摘Wireless communication with unmanned aerial vehicles(UAVs) has aroused great research interest recently. This paper is concerned with the UAV's trajectory planning problem for secrecy energy efficiency maximization(SEEM) in the UAV communication system. Specifically, we jointly consider the secrecy throughput and UAV's energy consumption in a three-node(fixed-wing UAV-aided source, destination, and eavesdropper) wiretap channel. By ignoring the energy consumption on radiation and signal processing, the system's secrecy energy efficiency is defined as the total secrecy rate normalized by the UAV's propulsion energy consumption within a given time horizon. Nonetheless, the SEEM problem is nonconvex and thus is intractable to solve. As a compromise, we propose an iterative algorithm based on sequential convex programming(SCP) and Dinkelbach's method to seek a suboptimal solution for SEEM. The algorithm only needs to solve convex problems, and thus is computationally efficient to implement. Additionally, we prove that the proposed algorithm has Karush-KuhnTucker(KKT) point convergence guarantee. Lastly, simulation results demonstrate the efficacy of our proposed algorithm in improving the secrecy energy efficiency for the UAV communication system.