In order to mitigate the effects of space adaptation syndrome(SAS) and improve the training efficiency of the astronauts, a novel astronaut rehabilitative training robot(ART) was proposed. ART can help the astronauts ...In order to mitigate the effects of space adaptation syndrome(SAS) and improve the training efficiency of the astronauts, a novel astronaut rehabilitative training robot(ART) was proposed. ART can help the astronauts to carry out the bench press training in the microgravity environment. Firstly, a dynamic model of cable driven unit(CDU) was established whose accuracy was verified through the model identification. Secondly, to improve the accuracy and the speed of the active loading, an active loading hybrid force controller was proposed on the basis of the dynamic model of the CDU. Finally, the actual effect of the hybrid force controller was tested by simulations and experiments. The results suggest that the hybrid force controller can significantly improve the precision and the dynamic performance of the active loading with the maximum phase lag of the active loading being 9° and the maximum amplitude error being 2% at the frequency range of 10 Hz. The controller can meet the design requirements.展开更多
In this paper,a novel train positioning method considering satellite raw observation data was proposed,which aims to promote train positioning performance from an innovative perspective of the train satellite-based po...In this paper,a novel train positioning method considering satellite raw observation data was proposed,which aims to promote train positioning performance from an innovative perspective of the train satellite-based positioning error sources.The method focused on overcoming the abnormal observations in satellite observation data caused by railway environment rather than the positioning results.Specifically,the relative positioning experimental platform was built and the zero-baseline method was firstly employed to evaluate the carrier phase data quality,and then,GNSS combined observation models were adopted to construct the detection values,which were applied to judge abnormal-data through the dual-frequency observations.Further,ambiguity fixing optimization was investigated based on observation data selection in partly-blocked environments.The results show that the proposed method can effectively detect and address abnormal observations and improve positioning stability.Cycle slips and gross errors can be detected and identified based on dual-frequency global navigation satellite system data.After adopting the data selection strategy,the ambiguity fixing percentage was improved by 29.2%,and the standard deviation in the East,North,and Up components was enhanced by 12.7%,7.4%,and 12.5%,respectively.The proposed method can provide references for train positioning performance optimization in railway environments from the perspective of positioning error sources.展开更多
A schematic to make the spectra of the exterior noise of high speed railway was put forward. The exterior noise spectrum was defined based on the characteristics of the high-speed train exterior noise. Its characteris...A schematic to make the spectra of the exterior noise of high speed railway was put forward. The exterior noise spectrum was defined based on the characteristics of the high-speed train exterior noise. Its characteristics considered here include identifying the exterior main sources and their locations, their frequency components including the Doppler effect due to the noise sources moving at high speed, the sound field intensity around the train in high-speed operation, the sound radiation path out of the train, and the pressure level and frequency components of the noise at the measuring points specified by the International Organization for Standardization(ISO). The characteristics of the high-speed train exterior noise of the high speed railways in operation were introduced. The advanced measuring systems and their principles for clearly indentifying the exterior noise sources were discussed in detail. Based on the concerned noise results measured at sites, a prediction model was developed to calculate the sound level and the characteristics of the exterior noise at any point where it is difficult to measure and to help to make the exterior noise spectrums. This model was also verified with the test results. The verification shows that there is a good agreement between the theoretical and experimental results.展开更多
Research on the distribution of smoke in tunnels is significant for the fire emergency rescue after an operating metro train catches fire. A dynamic grid technique was adopted to research the law of smoke flow diffusi...Research on the distribution of smoke in tunnels is significant for the fire emergency rescue after an operating metro train catches fire. A dynamic grid technique was adopted to research the law of smoke flow diffusion inside the tunnel when the bottom of a metro train was on fire and to compare the effect of longitudinal ventilation modes on the smoke motion when the burning train stopped. Research results show that the slipstream curves around the train obtained by numerical simulation are consistent with experimental data. When the train decelerates, the smoke flow first extends to the tail of the train. With the decrease of the train's speed, the smoke flow diffuses to the head of the train. After the train stops, the slipstream around the train formed in the process of train operation plays a leading role in the smoke diffusion in the tunnel. The smoke flow quickly diffuses to the domain in front of the train. After forward mechanical ventilation is provided, the smoke flow inside the tunnel continues to diffuse downstream. When reverse mechanical ventilation operates, the smoke in front of the train flows back rapidly and diffuses to the rear of the train.展开更多
基金Project(61175128) supported by the National Natural Science Foundation of ChinaProject(2008AA040203) supported by the National High Technology Research and Development Program of ChinaProject(QC2010009) supported by the Natural Science Foundation of Heilongjiang Province,China
文摘In order to mitigate the effects of space adaptation syndrome(SAS) and improve the training efficiency of the astronauts, a novel astronaut rehabilitative training robot(ART) was proposed. ART can help the astronauts to carry out the bench press training in the microgravity environment. Firstly, a dynamic model of cable driven unit(CDU) was established whose accuracy was verified through the model identification. Secondly, to improve the accuracy and the speed of the active loading, an active loading hybrid force controller was proposed on the basis of the dynamic model of the CDU. Finally, the actual effect of the hybrid force controller was tested by simulations and experiments. The results suggest that the hybrid force controller can significantly improve the precision and the dynamic performance of the active loading with the maximum phase lag of the active loading being 9° and the maximum amplitude error being 2% at the frequency range of 10 Hz. The controller can meet the design requirements.
基金Project(52272339)supported by the National Natural Science Foundation of ChinaProject(2023YFB390730303)supported by the National Key Research and Development Program of China+2 种基金Project(L2023G004)supported by the Science and Technology Research and Development Program of China State Railway Group Co.,Ltd.Project(QZKFKT2023-005)supported by the State Key Laboratory of Heavy-duty and Express High-power Electric Locomotive,ChinaProject(2022JZZ05)supported by the Open Foundation of MOE Key Laboratory of Engineering Structures of Heavy Haul Railway(Central South University),China。
文摘In this paper,a novel train positioning method considering satellite raw observation data was proposed,which aims to promote train positioning performance from an innovative perspective of the train satellite-based positioning error sources.The method focused on overcoming the abnormal observations in satellite observation data caused by railway environment rather than the positioning results.Specifically,the relative positioning experimental platform was built and the zero-baseline method was firstly employed to evaluate the carrier phase data quality,and then,GNSS combined observation models were adopted to construct the detection values,which were applied to judge abnormal-data through the dual-frequency observations.Further,ambiguity fixing optimization was investigated based on observation data selection in partly-blocked environments.The results show that the proposed method can effectively detect and address abnormal observations and improve positioning stability.Cycle slips and gross errors can be detected and identified based on dual-frequency global navigation satellite system data.After adopting the data selection strategy,the ambiguity fixing percentage was improved by 29.2%,and the standard deviation in the East,North,and Up components was enhanced by 12.7%,7.4%,and 12.5%,respectively.The proposed method can provide references for train positioning performance optimization in railway environments from the perspective of positioning error sources.
基金Project(2682013BR009)supported by the Fundamental Research Funds of the Central Universities,ChinaProject(2011AA11A103-2-2)the National High-Technology Research and Development Program of China
文摘A schematic to make the spectra of the exterior noise of high speed railway was put forward. The exterior noise spectrum was defined based on the characteristics of the high-speed train exterior noise. Its characteristics considered here include identifying the exterior main sources and their locations, their frequency components including the Doppler effect due to the noise sources moving at high speed, the sound field intensity around the train in high-speed operation, the sound radiation path out of the train, and the pressure level and frequency components of the noise at the measuring points specified by the International Organization for Standardization(ISO). The characteristics of the high-speed train exterior noise of the high speed railways in operation were introduced. The advanced measuring systems and their principles for clearly indentifying the exterior noise sources were discussed in detail. Based on the concerned noise results measured at sites, a prediction model was developed to calculate the sound level and the characteristics of the exterior noise at any point where it is difficult to measure and to help to make the exterior noise spectrums. This model was also verified with the test results. The verification shows that there is a good agreement between the theoretical and experimental results.
基金Project(U1134203)supported by the Major Program of the National Natural Science Foundation of ChinaProject(51105384)supported by the National Natural Science Foundation of China
文摘Research on the distribution of smoke in tunnels is significant for the fire emergency rescue after an operating metro train catches fire. A dynamic grid technique was adopted to research the law of smoke flow diffusion inside the tunnel when the bottom of a metro train was on fire and to compare the effect of longitudinal ventilation modes on the smoke motion when the burning train stopped. Research results show that the slipstream curves around the train obtained by numerical simulation are consistent with experimental data. When the train decelerates, the smoke flow first extends to the tail of the train. With the decrease of the train's speed, the smoke flow diffuses to the head of the train. After the train stops, the slipstream around the train formed in the process of train operation plays a leading role in the smoke diffusion in the tunnel. The smoke flow quickly diffuses to the domain in front of the train. After forward mechanical ventilation is provided, the smoke flow inside the tunnel continues to diffuse downstream. When reverse mechanical ventilation operates, the smoke in front of the train flows back rapidly and diffuses to the rear of the train.